dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:26:29Z
dc.date.accessioned2022-10-05T18:34:06Z
dc.date.available2014-05-27T11:26:29Z
dc.date.available2022-10-05T18:34:06Z
dc.date.created2014-05-27T11:26:29Z
dc.date.issued2012-05-01
dc.identifierPesquisa Operacional, v. 32, n. 2, p. 315-329, 2012.
dc.identifier0101-7438
dc.identifier1678-5142
dc.identifierhttp://hdl.handle.net/11449/73304
dc.identifier10.1590/S0101-74382012005000018
dc.identifierS0101-74382012005000018
dc.identifier2-s2.0-84866431896
dc.identifier2-s2.0-84866431896.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3922314
dc.description.abstractThis work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
dc.languageeng
dc.relationPesquisa Operacional
dc.relation0,365
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectCut levels
dc.subjectFuzzy numbers
dc.subjectFuzzy optimization
dc.subjectGenetic algorithms
dc.titleApplication of an iterative method and an evolutionary algorithm in fuzzy optimization
dc.typeArtigo


Este ítem pertenece a la siguiente institución