dc.contributorAuburn Univ
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorClarkson Univ
dc.contributorCSIC
dc.date.accessioned2014-05-20T15:30:59Z
dc.date.accessioned2022-10-05T17:02:23Z
dc.date.available2014-05-20T15:30:59Z
dc.date.available2022-10-05T17:02:23Z
dc.date.created2014-05-20T15:30:59Z
dc.date.issued2010-01-01
dc.identifierInternational Journal of Unconventional Computing. Philadelphia: Old City Publishing Inc, v. 6, n. 6, p. 451-460, 2010.
dc.identifier1548-7199
dc.identifierhttp://hdl.handle.net/11449/40254
dc.identifierWOS:000287425800001
dc.identifier7781282422851911
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3911262
dc.description.abstractBiochemical computing is an emerging field of unconventional computing that attempts to process information with biomolecules and biological objects using digital logic. In this work we survey filtering in general, in biochemical computing, and summarize the experimental realization of an and logic gate with sigmoid response in one of the inputs. The logic gate is realized with electrode-immobilized glucose-6-phosphate dehydrogenase enzyme that catalyzes a reaction corresponding to the Boolean and functions. A kinetic model is also developed and used to evaluate the extent to which the performance of the experimentally realized logic gate is close to optimal.
dc.languageeng
dc.publisherOld City Publishing Inc
dc.relationInternational Journal of Unconventional Computing
dc.relation1.022
dc.relation0,232
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectBiocomputing
dc.subjectenzyme logic
dc.subjectlogic gate
dc.subjectbinary logic
dc.subjectsigmoid response
dc.titleEnzymatic Logic Gates with Noise-Reducing Sigmoid Response
dc.typeArtigo


Este ítem pertenece a la siguiente institución