dc.contributorMelo, Alba Cristina Magalhães Alves de
dc.creatorRazzolini, Cainã Felipe Bento
dc.date.accessioned2020-04-09T17:39:17Z
dc.date.accessioned2022-10-04T14:09:07Z
dc.date.available2020-04-09T17:39:17Z
dc.date.available2022-10-04T14:09:07Z
dc.date.created2020-04-09T17:39:17Z
dc.date.issued2020-04-09
dc.identifierRAZZOLINI, Cainã Felipe Bento. CUDA-Parttree: estratégia paralela em GPU para alinhamento múltiplo heurístico de milhares de sequências. 2019. xi, 68 f., il. Dissertação (Mestrado em Informática)—Universidade de Brasília, Brasília, 2019.
dc.identifierhttps://repositorio.unb.br/handle/10482/37428
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3853107
dc.description.abstractO alinhamento de sequências biológicas é uma operação muito importante na Bioinformática e pode ser feito entre duas (alinhamento par-a-par) ou mais sequências (alinhamento múltiplo). O alinhamento múltiplo de sequências é um problema NP-completo e o algoritmo de programação dinâmica que obtém o alinhamento ótimo só é utilizado para conjuntos com poucas sequências (até 30). Por isso, são utilizados algoritmos heurísticos, que obtém alinhamento com acurácia aceitável em tempo hábil. Para conjuntos com dezenas de milhares de sequências são necessários algoritmos especificamente criados para esse fim. O Parttree é um algoritmo heurístico de alinhamento múltiplo de sequências para conjuntos com dezenas de milhares de sequências. Nessa dissertação de mestrado, propomos e avaliamos o CUDA-Parttree, uma estratégia de paralela que executa a primeira fase do Parttree (cálculo da matriz de distâncias com contagem de 6mers) parcialmente em GPU. Com essa estratégia, conseguimos reduzir consideravelmente o tempo de execução do cálculo das distâncias entre as sequências quando comparado ao Parttree. O CUDAParttree foi usado no alinhamento de 6 conjuntos de sequências reais de proteínas, como tamanho variando de 25.534 a 151.443 sequências, e 4 conjuntos de sequências sintéticas, variando de 10.000 a 100.000. O CUDA-Parttree conseguiu um speedup de 6,10x no cálculo da matriz de distâncias para o conjunto Cyclodex_gly_tran (50.280 sequências), reduzindo o tempo de execução de 33,94s para 5,57s. Contudo, as transformações de dados necessárias para o cálculo em GPU e para retornar a matriz de distâncias para o Parttree reduziram o speedup para 2,58x mais rápido que a versão em CPU. Com um conjunto de sequências sintéticas com 100.000 sequências, conseguimos um speedup de 4,46x, reduzindo o tempo de execução do cálculo de distâncias de 209,54s para 47,00s.
dc.languagePortuguês
dc.rightsA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor com as seguintes condições: Na qualidade de titular dos direitos de autor da publicação, autorizo a Universidade de Brasília e o IBICT a disponibilizar por meio dos sites www.bce.unb.br, www.ibict.br, http://hercules.vtls.com/cgi-bin/ndltd/chameleon?lng=pt&skin=ndltd sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o texto integral da obra disponibilizada, conforme permissões assinaladas, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data.
dc.rightsAcesso Aberto
dc.titleCUDA-Parttree : estratégia paralela em GPU para alinhamento múltiplo heurístico de milhares de sequências
dc.typeTesis


Este ítem pertenece a la siguiente institución