dc.creatorBedoya-Vargas, Marlon E.
dc.creatorVásquez-Correa, Juan C.
dc.creatorOrozco-Arroyave, Juan R.
dc.date.accessioned2019-07-18T14:13:20Z
dc.date.accessioned2019-08-22T14:18:17Z
dc.date.accessioned2022-09-29T12:45:22Z
dc.date.available2019-07-18T14:13:20Z
dc.date.available2019-08-22T14:18:17Z
dc.date.available2022-09-29T12:45:22Z
dc.date.created2019-07-18T14:13:20Z
dc.date.created2019-08-22T14:18:17Z
dc.date.issued2018-09-14
dc.identifierhttp://hdl.handle.net/20.500.12622/1064
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3753351
dc.description.abstractLa Enfermedad de Parkinson (EP) es un desorden neurodegenerativo del sistema nervioso central, cuyas características principales incluyen entre otras la rigidez, bradicinesia y pérdida de los reflejos posturales. El diagnóstico de la EP está basado en análisis de la historia clínica y evaluaciones físicas realizadas a los pacientes. El monitoreo del estado neurológico de los pacientes está basado en valoraciones subjetivas que realizan los neurólogos. El análisis de la marcha usando sensores inerciales aparece como un instrumento sencillo y útil para ayudar en el proceso de diagnóstico y monitoreo de los pacientes con EP. En este artículo usamos el sistema eGaIT, el cual captura señales de acelerómetro y giróscopo del proceso de marcha para evaluar las habilidades motoras de los pacientes. Las transformadas de Fourier y Wavelet son utilizadas para extraer medidas basadas en energía y entropía en el dominio de Tiempo-Frecuencia. Las características extraídas son utilizadas para discriminar entre pacientes con EP y personas sanas. De acuerdo con los resultados, es posible clasificar estos dos grupos con una precisión de hasta el 94 %.
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)
dc.relationTecnoLógicas
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1056/1064
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1056/1079
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1056/1216
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/1056/1237
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.source2256-5337
dc.source0123-7799
dc.sourceTecnoLógicas; Vol 21 No 43 (2018); 53-69
dc.sourceTecnoLógicas; Vol. 21 Núm. 43 (2018); 53-69
dc.subjectEnfermedad de Parkinson
dc.subjectsensores inerciales
dc.subjectrepresentación tiempo-frecuencia
dc.subjectTransformada Wavelet
dc.subjectanálisis de marcha
dc.subjectclasificación supervisada
dc.titleRepresentaciones tiempo-frecuencia basadas en sensores inerciales para caracterizar la marcha en la enfermedad de Parkinson
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArticles
dc.typeArtículos


Este ítem pertenece a la siguiente institución