dc.creatorRivera-Borroto O.M.
dc.creatorGarcía-De La Vega J.M.
dc.creatorMarrero-Ponce Y.
dc.creatorGrau R.
dc.date.accessioned2020-03-26T16:32:45Z
dc.date.accessioned2022-09-28T20:30:21Z
dc.date.available2020-03-26T16:32:45Z
dc.date.available2022-09-28T20:30:21Z
dc.date.created2020-03-26T16:32:45Z
dc.date.issued2016
dc.identifierIEEE/ACM Transactions on Computational Biology and Bioinformatics; Vol. 13, Núm. 1; pp. 158-167
dc.identifier15455963
dc.identifierhttps://hdl.handle.net/20.500.12585/9004
dc.identifier10.1109/TCBB.2015.2424435
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier24436944800
dc.identifier57188713140
dc.identifier55665599200
dc.identifier57193746355
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3729759
dc.description.abstractResearch on similarity searching of cheminformatic data sets has been focused on similarity measures using fingerprints. However, nominal scales are the least informative of all metric scales, increasing the tied similarity scores, and decreasing the effectivity of the retrieval engines. Tanimoto's coefficient has been claimed to be the most prominent measure for this task. Nevertheless, this field is far from being exhausted since the computer science no free lunch theorem predicts that "no similarity measure has overall superiority over the population of data sets". We introduce 12 relational agreement (RA) coefficients for seven metric scales, which are integrated within a group fusion-based similarity searching algorithm. These similarity measures are compared to a reference panel of 21 proximity quantifiers over 17 benchmark data sets (MUV), by using informative descriptors, a feature selection stage, a suitable performance metric, and powerful comparison tests. In this stage, RA coefficients perform favourably with repect to the state-of-the-art proximity measures. Afterward, the RA-based method outperform another four nearest neighbor searching algorithms over the same data domains. In a third validation stage, RA measures are successfully applied to the virtual screening of the NCI data set. Finally, we discuss a possible molecular interpretation for these similarity variants. © 2016 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84962028690&doi=10.1109%2fTCBB.2015.2424435&partnerID=40&md5=fbef0edaa9b5080d13f6b2c9480cf72b
dc.titleRelational Agreement Measures for Similarity Searching of Cheminformatic Data Sets


Este ítem pertenece a la siguiente institución