dc.creatorTorres R.
dc.creatorLizarazo Z.
dc.creatorTorres E.
dc.date.accessioned2020-03-26T16:32:49Z
dc.date.accessioned2022-09-28T20:30:15Z
dc.date.available2020-03-26T16:32:49Z
dc.date.available2022-09-28T20:30:15Z
dc.date.created2020-03-26T16:32:49Z
dc.date.issued2014
dc.identifierIEEE Transactions on Signal Processing; Vol. 62, Núm. 14; pp. 3695-3705
dc.identifier1053587X
dc.identifierhttps://hdl.handle.net/20.500.12585/9036
dc.identifier10.1109/TSP.2014.2328977
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier56270896900
dc.identifier8330328300
dc.identifier35094573000
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3729726
dc.description.abstractConsidering that fractional correlation function and the fractional power spectral density, for -stationary random signals, form a fractional Fourier transform pair. We present an interpolation formula to estimate a random signal from a temporal random series, based on the fractional sampling theorem for -bandlimited random signals. Furthermore, by establishing the relationship between the sampling theorem and the von Neumann ergodic theorem, the estimation of the power spectral density of a random signal from one sample signal becomes a suitable approach. Thus, the validity of the sampling theorem for random signals is closely linked to an ergodic hypothesis in the mean sense. © 2014 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84903694215&doi=10.1109%2fTSP.2014.2328977&partnerID=40&md5=0cb6bcebd7e51b7bb66bab03e6173451
dc.titleFractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem


Este ítem pertenece a la siguiente institución