dc.creatorMedina Marrero R.
dc.creatorMarrero-Ponce Y.
dc.creatorBarigye S.J.
dc.creatorEcheverría Díaz Y.
dc.creatorAcevedo Barrios, Rosa
dc.creatorCasañola-Martín G.M.
dc.creatorGarcía Bernal M.
dc.creatorTorrens, F.
dc.creatorPérez-Giménez F.
dc.date.accessioned2020-03-26T16:32:48Z
dc.date.available2020-03-26T16:32:48Z
dc.date.created2020-03-26T16:32:48Z
dc.date.issued2015
dc.identifierSAR and QSAR in Environmental Research; Vol. 26, Núm. 11; pp. 943-958
dc.identifier1062936X
dc.identifierhttps://hdl.handle.net/20.500.12585/9032
dc.identifier10.1080/1062936X.2015.1104517
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier6506280403
dc.identifier55665599200
dc.identifier55363486500
dc.identifier55683426700
dc.identifier56674579200
dc.identifier9434652400
dc.identifier57193209050
dc.identifier7004872108
dc.identifier6701762262
dc.description.abstractThe QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. © 2015 Taylor & Francis.
dc.languageeng
dc.publisherTaylor and Francis Ltd.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84947865592&doi=10.1080%2f1062936X.2015.1104517&partnerID=40&md5=9de40bde3e81a41d4828d1586f4b0c9f
dc.titleQuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents


Este ítem pertenece a la siguiente institución