dc.creatorMontoya O.D.
dc.creatorGarrido Arévalo, Víctor Manuel
dc.creatorGrisales-Noreña L.F.
dc.creatorGonzález-Montoya D.
dc.creatorRamos-Paja C.A.
dc.date.accessioned2020-03-26T16:32:31Z
dc.date.available2020-03-26T16:32:31Z
dc.date.created2020-03-26T16:32:31Z
dc.date.issued2018
dc.identifier2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.identifier9781538678428
dc.identifierhttps://hdl.handle.net/20.500.12585/8858
dc.identifier10.1109/EPIM.2018.8756354
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier56919564100
dc.identifier57210170020
dc.identifier55791991200
dc.identifier57205565936
dc.identifier22836502400
dc.description.abstractThis paper presents a metaheuristic optimization technique named back hole optimization (BHO) for solving the problem of optimal dimensioning of distributed generation in radial distribution networks. This problem is formulated as a conventional optimal power flow problem in ac power grids. A master-slave methodology is proposed to solve this optimization problem. In the master stage the BHO technique decides the power output of each distributed generator (DG), while slave stage is responsible for solving the resulting power flow problem via classical sweep backward/forward technique. As comparison methods, classical particle swarm optimization as well as interior point methods are used. Two classical test systems with radial topologiesy and 33 and 69 nodes are used for numerical validations by using the MATLAB programming environment. Simulation results show the quality of the proposed optimization technique for power losses reduction in comparison with large-scale used optimization approaches available in specialized literature. © 2018 IEEE.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation14 November 2018 through 16 November 2018
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85069788404&doi=10.1109%2fEPIM.2018.8756354&partnerID=40&md5=7a6f28d2ce047f5214b68e1d84f5372e
dc.source9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018
dc.titleOptimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization


Este ítem pertenece a la siguiente institución