dc.contributorFerme E.
dc.contributorSimari G.R.
dc.contributorGutierrez Segura F.
dc.contributorRodriguez Melquiades J.A.
dc.creatorCaicedo-Torres W.
dc.creatorPaternina-Caicedo Á.
dc.creatorPinzón-Redondo H.
dc.creatorGutiérrez J.
dc.date.accessioned2020-03-26T16:32:36Z
dc.date.accessioned2022-09-28T20:06:38Z
dc.date.available2020-03-26T16:32:36Z
dc.date.available2022-09-28T20:06:38Z
dc.date.created2020-03-26T16:32:36Z
dc.date.issued2018
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192
dc.identifier9783030039271
dc.identifier03029743
dc.identifierhttps://hdl.handle.net/20.500.12585/8921
dc.identifier10.1007/978-3-030-03928-8_15
dc.identifierUniversidad Tecnológica de Bolívar
dc.identifierRepositorio UTB
dc.identifier55782426500
dc.identifier35769665400
dc.identifier56375235000
dc.identifier7401653270
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3719781
dc.description.abstractDengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis. © Springer Nature Switzerland AG 2018.
dc.languageeng
dc.publisherSpringer Verlag
dc.relation13 November 2018 through 16 November 2018
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057089239&doi=10.1007%2f978-3-030-03928-8_15&partnerID=40&md5=eb0deb2a1d840b5ff71ebabd700ffa29
dc.source16th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2018
dc.titleDifferential diagnosis of dengue and chikungunya in colombian children using machine learning


Este ítem pertenece a la siguiente institución