dc.contributorVega Torres, Marco Antonio
dc.contributorhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000966720
dc.creatorGómez Barbosa, Juan Sebastián
dc.date.accessioned2019-12-16T18:22:00Z
dc.date.available2019-12-16T18:22:00Z
dc.date.created2019-12-16T18:22:00Z
dc.date.issued2019-12-16
dc.identifierGómez Barbosa, J.S.(2019). Menester de implementar el estándar 802.11ax en las redes actuales. Universidad Santo Tomas, Bogotá
dc.identifierhttp://hdl.handle.net/11634/20352
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherPregrado Ingeniería Electrónica
dc.publisherFacultad de Ingeniería Electrónica
dc.relationPR Newswire. (2019, Agosto 1). Comtrend Announces Its First WiFi 6 Gateway to Service Providers. PR Newswire US. Retribuido de: https://search-ebscohost-com.craiustadigital.usantotomas.edu.co/login.aspx?direct=true&db=bwh&AN=201908011100PR. NEWS.USPR.UN28587&lang=es&site=eds-live.
dc.relationPR Newswire. (2019, Octubre 10). Academic Institutions Embrace Aruba WiFi 6 with Turn-key Technologies, Inc. PR Newswire US. Retribuido de: https://search-ebscohostcom.craiustadigital.usantotomas.edu.co/login.aspx?direct=true&db=bwh&AN=201910101 100PR.NEWS.USPR.UN97790&lang=es&site=eds-live
dc.relationLopez-Perez, D., Garcia-Rodriguez, A., Galati-Giordano, L., Kasslin, M., & Doppler, K. (2019). IEEE 802.11be Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax. IEEE Communications Magazine, 57(9), 113–119. Referido de: https://doi-org.crai-ustadigital.usantotomas.edu.co/10.1109/MCOM.001.1900338
dc.relationAli, M. Z., Misic, J., & Misic, V. B. (2019). Bridging the Transition from IEEE 802.11ac to IEEE 802.11ax: Survival of EDCA in a Coexistence Environment. IEEE Network, 33(3), 102–107. Referido de: https://doi-org.craiustadigital.usantotomas.edu.co/10.1109/MNET.2019.1700224
dc.relationBoris Bellalta. (2016, Marzo 2). High-efficiency WLANS. IEEE Wireless Communications (Volumen: 23, emisión: 1, febrero 2016). Retribuido de: https://ieeexplore.ieee.org/abstract/document/7422404/citations#citations
dc.relationDer-Jiunn Deng, Kwang-Cheng Chen, Rung-Shiang Cheng. (2014, Agosto 18-20). Next generation wireless local area networks. Rhodes, Greece. ISBN: 978-1-6319-0025-9. IEEE (20 octubre 2014). Retribuido de: https://ieeexplore.ieee.org/abstract/document/6928663.
dc.relationAli, R., Kim, S. W., Kim, B.-S., & Park, Y. (2018). Design of MAC Layer Resource Allocation Schemes for IEEE 802.11ax: Future Directions. IETE Technical Review, 35(1), 28–52. Retribuido de: https://doi-org.craiustadigital.usantotomas.edu.co/10.1080/02564602.2016.1242387
dc.relationLee, K. (2019). Performance Analysis of the IEEE 802.11ax MAC Protocol for Heterogeneous Wi-Fi Networks in Non-Saturated Conditions. Sensors (14248220), 19(7), 1540. Retribuido de: https://doi-org.craiustadigital.usantotomas.edu.co/10.3390/s19071540
dc.relationShubham Saloni, Achyut Hegde. (2016, Enero 22-24). WiFi-aware as a connectivity solution for IoT pairing IoT with WiFi aware technology: Enabling new proximity-based services. Pune, India. ISBN: 978-5090-0045-6. IEEE (8 septiembre 2016). Retribuido de: https://ieeexplore.ieee.org/document/7562710/authors#authors.
dc.relationKwon, D., Kim, S.-W., Kim, J., & Mohaisen, A. (2018). Interference-Aware Adaptive Beam Alignment for Hyper-Dense IEEE 802.11ax Internet-of-Things Networks. Sensors (14248220), 18 (10), 3364. Retribuido de: https://doi-org.craiustadigital.usantotomas.edu.co/10.3390/s18103364.
dc.relationBurt, J. (2019). Extreme Networks Readies WiFi 6 Access Points. EWeek, N.PAG. ISSN: 1530-6283 Referido de: https://search-ebscohost-com.craiustadigital.usantotomas.edu.co/login.aspx?direct=true&db=a9h&AN=134250153&lang=e s&site=ehost-live.
dc.relationAjami, A.-K., & Artail, H. (2019). Analyzing the Impact of the Coexistence with IEEE 802.11ax Wi-Fi on the Performance of DSRC Using Stochastic Geometry Modeling. IEEE Transactions on Communications, 67(9), 6343–6359. Retribuido de: https://doi-org.craiustadigital.usantotomas.edu.co/10.1109/TCOMM.2019.2923411.
dc.relationMicrowave Journal, paginas 13–15, (2019). What’s Best? Wi-Fi 6 (802.11ax) or 5G? Retribuido de: https://search-ebscohost-com.craiustadigital.usantotomas.edu.co/login.aspx?direct=true&db=a9h&AN=136583871&lang=e s&site=ehost-live.
dc.relationShoko Shinohara, Junichi Iwatani, & Yasuhiko Inoue. (2017). Standardization of Nextgeneration Wireless LAN IEEE 802.11ax. NTT Technical Review, 15(1), 1–6. Retribuido de: https://search-ebscohost-com.craiustadigital.usantotomas.edu.co/login.aspx?direct=true&db=a9h&AN=120884702&lang=e s&site=ehost-live
dc.relationFLEISHMAN, G. (2018). Wi-Fi gets quicker with 802.11ax, but buying early might offer few advantages. Macworld - Digital Edition, 35(6), 104–111. Retribuido de: https://search-ebscohost-com.craiustadigital.usantotomas.edu.co/login.aspx?direct=true&db=a9h&AN=129801187&lang=e s&site=ehost-live
dc.relationNaciones unidas. 2015. Acuerdo de Paris. Retribuido de: http://unfccc.int/files/essential_background/convention/application/pdf/spanish_paris_agre ement.p df, articulo 1 punto a.
dc.relationRoberto Fuhr (2019). Referido de: https://borealtech.com/802-11-ac-wave-2-la-nuevageneracion/.
dc.relationOrthogonal Frequency Division Multiple Access: is it the multiple access system of the future?, S. Srikanth, V. Kumaran, C. Manikandan et al., AU-KBC Research Center, Anna University, India.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.titleMenester de implementar el estándar 802.11ax en las redes actuales


Este ítem pertenece a la siguiente institución