dc.contributorCortés, Melquisedec
dc.contributorUniversidad Santo Tomás
dc.creatorCastro Candia, Johny Arley
dc.date.accessioned2022-01-31T14:49:16Z
dc.date.available2022-01-31T14:49:16Z
dc.date.created2022-01-31T14:49:16Z
dc.date.issued2022-01-26
dc.identifierCastro, J. (2022). Sistemas de drenaje urbano sostenible (SUD´s) y su modelación en SWMM. Informe de investigación de maestría, Universidad Santo Tomás, Tunja
dc.identifierhttp://hdl.handle.net/11634/42794
dc.identifierreponame:Repositorio Institucional Universidad Santo Tomás
dc.identifierinstname:Universidad Santo Tomás
dc.identifierrepourl:https://repository.usta.edu.co
dc.description.abstractThe changes generated in land use and the lack of vegetation in populated centers and especially in cities cause an increase in the impermeability of surfaces. The result of these processes is greater volumes of runoff water on the surface in response to the stimulus generated by precipitation. Taking into account that the rate of water infiltration in the soil decreases, by combining the lack of permeability of the surfaces and high-intensity precipitation events, the probability of flooding increases (Goonetilleke, Thomas, Ginn, & Gilbert , 2005). Paradoxically, there has been a confrontation between urban development and water management; even when it is undeniable that this precious resource is becoming scarcer every day. Day by day, urban surfaces become less permeable, thus modifying the natural flows of the hydrological cycle, affecting groundwater recharge and increasing the rate of runoff of water on the ground surface. Urbanization considerably affects runoff (Goonetilleke, Thomas, Ginn, & Gilbert, 2005), not only in volumes of water transported but also in pollution load. Alternative approaches are required to develop sustainable water systems in the urban environment, as components of a solution that allows integrating strategies within a landscape of organization and nature, where it tends to generate conditions similar to the natural ones of the basin, prior to the process. urban planning, which impact in the middle of cities, integrating landscape and architectural factors that provide elements of visual harmony in the environment (Saraswat, Kumar, & Mishra, 2016).
dc.languagespa
dc.publisherUniversidad Santo Tomás
dc.publisherMaestría Ingeniería Civil con Énfasis en Hidroambiental
dc.publisherFacultad de Ingeniería Civil
dc.relationArias, L., Grimard, J.-C., & Bertrand-Krajewski, J.-L. (2016). First results of hydrological performances of three different green roofs. NOVATECH.
dc.relationBarbosa, A. E., Fernandes, J. N., & David, L. M. (2012). Key issues for sustainable urban stormwater management. Elsevier, 6787-6798.
dc.relationBettencourt, L., Lobo, J., Helbing, D., Kühnert, C., & Geoffrey , W. (2007). Growth, innovation, scaling, and the pace of life in cities. PNAS, 104 (17) 7301-7306.
dc.relationBurian, S., & Edwards, F. (2002). Historical Perspectives of Urban Drainage. Ninth International Conference on Urban Drainage.
dc.relationButler, D., & Davies , J. W. (2004). Urban Drainage. Taylor and Francis Group.
dc.relationCampbell, N., D’Arcy, B., Frost, A., Novotny, V., & Sansom, A. (2003). Diifuse pollution: An introduction to the problems and solutions. Londres: IWA Publishing.
dc.relationChow, V., Maidment, D. R., & Mays, L. W. (1994). Hidrológia aplicada. Santafé de Bogotá: McGraw-Hill Interamericana, S.A.
dc.relationDeletic, A., & Fletcher, T. (2006). Performance of grass filters used for stormwater treatment—a field and modelling study. Elsevier, 261-275.
dc.relationDelgado, G. C., Campos, C., & Rentería, P. (2012). Cambio Climático y el Metabolismo Urbano de las Megaurbes Latinoamericanas. Hábitat Sustentable, 2-25.
dc.relationDelleur, J. (2003). The evolution of urban hydrology: Past, present and future. Journal of hydraulic engineering, 128, No. 8, pág. 563.
dc.relationDepartamento de Asuntos Económicos y Sociales, de las Naciones Unidas DESA. (2014). La situación demográfica en el mundo, 2014. Nueva York.
dc.relationDepartment of Environmental Resources . (1999). Low-impact development: an integrated design approach. Maryland : Prince George’s County.
dc.relationDepartment of Environmental Resources The Prince George's County, Maryland. (2007). Bioretention Manual. Maryland.
dc.relationDurrans, R. (2003). Stormwater Quality Management. En R. Durrans, Stormwater conveyance modeling and design (págs. 608-638). Waterbury.
dc.relationEPA (Environmental Protection Agency). (1999). Preliminary Data Summary of Urban Storm Water Best Management Practices (Vols. EPA-821-R-99-012). Washington, DC.
dc.relationFletcher, T., Shuster, W., Hunt, W., & Ashley, R. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and. Urban Water Journal.
dc.relationGoonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of land use in urban stormwater quality management. Elsevier, 31-42.
dc.relationHsu, M. H., Chen, S. H., & Chang, T. J. (2000). Inundation simulation for urban drainage basin with storm sewer system. Journal of Hydrology, 234, 21-37. Obtenido de https://doi.org/10.1016/S0022-1694(00)00237-7
dc.relationJiménez, B. (1999). Contaminación por Escorrentía Urbana. Colección SEINOR, 495.
dc.relationKanso, A., Tassin, B., & Chebbo, G. (2005). A benchmark methodology for managing uncertainties in urban runoff quality models. . Water Science and Technology, 163-170.
dc.relationLeandro, J., Schumanna, A., & Pfister, A. (2016). A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling. Journal of Hydrology, 356-365.
dc.relationLegret, M., Nicollet, M., Miloda, P., Colandini,, V., & Raimbault, G. (1999). Simulation of Heavy Metal Pollution from Stormwater Infiltration Through a Porous Pavement with Reservoir Structure. Water Science Technology, 33, 119-125.
dc.relationMiller , J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 345-362.
dc.relationMolina León, M., Gutierrez, L., & Salazar, J. (2011). SISTEMAS URBANOS DE DRENAJE SOSTENIBLE SUDS PARA EL PLAN DE ORDENAMIENTO ZONAL NORTE POZN. DOCUMENTO TECNICO DE SOPORTE DTS. SECRETARIA DISTRITAL DE AMBIENTE. Bogotá, Colombia.
dc.relationMorales Torres, A., Escuder Bueno , I., Andrés Doménech , I., & Perales Momparler , S. (2016). Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management. Elservier, 518-528.
dc.relationMorales Torres, A., Escudero Bueno, I., Ignacio, A., & Perales Momparler, S. (2016). Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management. Environmental Modelling & Software, 518-528.
dc.relationRauch, W., Vanrolleghem, P. A., Bertrand-Krajewski, J. L., Schilling, W., Mark, O., Krebs, P., & Schutze, M. (2002). Deterministic modelling of integrated urban drainage systems. Water science and technology , 81-94.
dc.relationRomnée, A., Evrard, A., & Trachte, S. (2015). Methodology for a stormwater sensitive urban watershed design. Elsevier, 87-102.
dc.relationSaraswat, C., Kumar, P., & Mishra, B. K. (2016). Assessment of stormwater runoff management practices and governance under climate change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Elsevier, 101-117.
dc.relationSchueler, T. R. (1987). Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs. Order copies from, Metropolitan Information Center.
dc.relationWhelans, C., Maunsell, G. H., & Thompson, P. (1994). Planning and management guidelines for water sensitive urban (residential) design. Westem Australia: Deparatament of Planning and Urban Development of Western Australia.
dc.relationWoods-Ballard, B., Kellagher, R., Martin, P., Jefferies, C., Bray, R., & Shaffer, P. (2007). The SuDS manual. London: Ciria.
dc.rightshttp://creativecommons.org/publicdomain/zero/1.0/
dc.rightsAbierto (Texto Completo)
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCC0 1.0 Universal
dc.titleSistemas de drenaje urbano sostenible (SUD´s) y su modelación en SWMM


Este ítem pertenece a la siguiente institución