dc.creatorDorea, Chang Chung Yu
dc.creatorGonçalves, Cátia Regina
dc.creatorMedeiros, Pledson Guedes de
dc.creatorSantos, Walter Batista dos
dc.date2013-04-09T18:56:42Z
dc.date2013-04-09T18:56:42Z
dc.date2012
dc.date.accessioned2017-03-07T12:49:19Z
dc.date.available2017-03-07T12:49:19Z
dc.identifierDOREA, C. C. Y. et al. False-alarm and non-detection probabilities for on-line quality control via HMM. International Journal of Mathematical Analysis, v. 6, n. 24, 2012. Disponível em: <http://www.m-hikari.com/ijma/ijma-2012/ijma-21-24-2012/doreaIJMA21-24-2012.pdf>. Acesso em: 22 mar. 2013.
dc.identifierhttp://repositorio.unb.br/handle/10482/12761
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/355320
dc.descriptionOn-line quality control during production calls for monitoring produced items according to some prescribed strategy. It is reasonable to assume the existence of system internal non-observable variables so that the carried out monitoring is only partially reliable. In this note, under the setting of a Hidden Markov Model (HMM) and assuming that the evolution of the internal state changes are governed by a two-state Markov chain, we derive estimates for false-alarm and non-detection malfunctioning probabilities. Kernel density methods are used to approximate the stable regime density and the stationary probabilities. As a side result, alternative monitoring strategies are proposed.
dc.languageeng
dc.publisherHikari Ltd
dc.rightsOpen Access
dc.rightsInternational Journal Of Mathematical Analysis – Esta licenciada com uma licença Creative Commons (Attribution 3.0 Unported (CC BY 3.0)). Fonte: http://www.m-hikari.com/ijma/index.html. Acesso em: 22 mar. 2013.
dc.subjectAnálise numérica
dc.subjectProcesso estocástico
dc.subjectProcessos de Markov
dc.subjectProcessos de Markov - soluções numéricas
dc.titleFalse-alarm and non-detection probabilities for on-line quality control via HMM
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución