dc.contributorRuiz Pardo, Ruth Yolanda
dc.contributorMoreno Moreno, Fabián Leonardo
dc.date.accessioned2014-04-25T20:56:56Z
dc.date.available2014-04-25T20:56:56Z
dc.date.created2014-04-25T20:56:56Z
dc.date.issued2014-04-25
dc.identifierAguilera, J. M. (2005). Why food microstructure? Journal of Food Engineering, 67(1-2), 3–11. doi:10.1016/j.jfoodeng.2004.05.050
dc.identifierAider, M., & de Halleux, D. (2008a). Passive and microwave-assisted thawing in maple sap cryoconcentration technology. Journal of Food Engineering, 85(1), 65–72. doi:10.1016/j.jfoodeng.2007.07.025
dc.identifierAider, M., & de Halleux, D. (2008b). Production of concentrated cherry and apricot juices by cryoconcentration technology. LWT - Food Science and Technology, 41(10), 1768–1775. doi:10.1016/j.lwt.2008.02.008
dc.identifierAider, M., & de Halleux, D. (2009). Cryoconcentration technology in the bio-food industry: Principles and applications. LWT - Food Science and Technology, 42(3), 679–685. doi:10.1016/j.lwt.2008.08.013
dc.identifierAider, M., de Halleux, D., & Akbache, A. (2007). Whey cryoconcentration and impact on its composition. Journal of Food Engineering, 82(1), 92–102. doi:10.1016/j.jfoodeng.2007.01.025
dc.identifierAider, M., de Halleux, D., & Melnikova, I. (2007). Skim Milk Whey Cryoconcentration and Impact on the Composition of the Concentrated and Ice Fractions. Food and Bioprocess Technology, 2(1), 80–88. doi:10.1007/s11947-007-0023-0
dc.identifierAider, M., de Halleux, D., & Melnikova, I. (2008). Gravitational and microwave-assisted thawing during milk whey cryoconcentration. Journal of Food Engineering, 88(3), 373–380. doi:10.1016/j.jfoodeng.2008.02.024
dc.identifierAider, M., de Halleux, D., & Melnikova, I. (2009). Skim acidic milk whey cryoconcentration and assessment of its functional properties: Impact of processing conditions. Innovative Food Science & Emerging Technologies, 10(3), 334–341. doi:10.1016/j.ifset.2009.01.005
dc.identifierAider, M., & Ounis, W. Ben. (2012). Skim milk cryoconcentration as affected by the thawing mode: gravitational vs. microwave-assisted. International Journal of Food Science & Technology, 47(1), 195–202. doi:10.1111/j.1365-2621.2011.02826.x
dc.identifierAkyurt, M., Zaki, G., & Habeebullah, B. (2002). Freezing phenomena in ice – water systems. Energy Conversion and Management, 43, 1773–1789.
dc.identifierAuleda, J. M., Raventós, M., Sánchez, J., & Hernández, E. (2011). Estimation of the freezing point of concentrated fruit juices for application in freeze concentration. Journal of Food Engineering, 105(2), 289–294. doi:10.1016/j.jfoodeng.2011.02.035
dc.identifierBelén, F., Benedetti, S., Sánchez, J., Hernández, E., Auleda, J. M., Prudêncio, E. S., … Raventós, M. (2013). Behavior of functional compounds during freeze concentration of tofu whey. Journal of Food Engineering, 116(3), 681–688. doi:10.1016/j.jfoodeng.2013.01.019
dc.identifierBelén, F., Sánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2012). One option for the management of wastewater from tofu production: Freeze concentration in a falling-film system. Journal of Food Engineering, 110(3), 364–373. doi:10.1016/j.jfoodeng.2011.12.036
dc.identifierBurdo, O. G., Kovalenko, E. A., & Kharenko, D. A. (2008). Intensification of the processes of low-temperature separation of food solutions. Time, 28, 311–316. doi:10.1016/j.applthermaleng.2006.02.035
dc.identifierCampos-Mendiola, R., Hernández-Sánchez, H., Chanona-Pérez, J. J., Alamilla-Beltrán, L., Jiménez-Aparicio, a., Fito, P., & Gutiérrez-López, G. F. (2007). Non-isotropic shrinkage and interfaces during convective drying of potato slabs within the frame of the systematic approach to food engineering systems (SAFES) methodology. Journal of Food Engineering, 83(2), 285–292. doi:10.1016/j.jfoodeng.2007.02.027
dc.identifierChabarov, A., & Aider, M. (2013). Mathematical modeling and experimental validation of the mass transfer during unidirectional progressive cryoconcentration of skim milk. Innovative Food Science & Emerging Technologies, 1–9. doi:10.1016/j.ifset.2013.08.001
dc.identifierChirife, J., & Buera, M. P. F. (1997). A Simple Model for Predicting the Viscosity of Sugar and Oligosaccharide Solutions. Science, 8774(97).
dc.identifierDelgado, A. E., & Sun, D. (2001). Heat and mass transfer models for predicting freezing processes - a review. Journal of Food Engineering, 47, 157–174.
dc.identifierDomínguez, J. C. (2012). Colombia baja al sexto lugar de exportación de café. EL TIEMPO. Retrieved from http://www.eltiempo.com/archivo/documento/CMS-12174750
dc.identifierFalguera, V., Aliguer, N., & Falguera, M. (2012). An integrated approach to current trends in food consumption: Moving toward functional and organic products? Food Control, 26(2), 274–281. doi:10.1016/j.foodcont.2012.01.051
dc.identifierFAO, O. de las N. U. para la alimentación y A. (2010). Perfiles de países de la FAO, Colombia: Sector Agropecuario. Retrieved from http://www.fao.org/countryprofiles/index.asp?lang=es&iso3=COL&subj=4
dc.identifierFarhangdoust, S., Zamanian, a., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013
dc.identifierFederación Nacional de Cafeteros de Colombia. (2010). Café de Colombia, un Café Sobresaliente. Retrieved from http://www.cafedecolombia.com
dc.identifierFujioka, R., Wang, L. P., Dodbiba, G., & Fujita, T. (2013). Application of progressive freezeconcentration for desalination. Desalination, 319, 33–37. doi:10.1016/j.desal.2013.04.005
dc.identifierGao, W., Habib, M., & Smith, D. W. (2009). Removal of organic contaminants and toxiciy from industrial effluents using freezing processes. Desalination, 245(1-3), 108–119. doi:10.1016/j.desal.2008.06.013
dc.identifierGao, W., & Shao, Y. (2009). Freeze concentration for removal of pharmaceutically active compounds in water. Desalination, 249(1), 398–402. doi:10.1016/j.desal.2008.12.065
dc.identifierGEA Messo PT. (2011). Freeze Concentration IceCon the next generation. Retrieved from http://www.gea-messopt.com/geacrystal/cmsresources.nsf/filenames/freezeconcentration-sm-052011.pdf
dc.identifierGEA Niro. (n.d.). A freeze concentration that is second to none. Retrieved from http://www.niro.com/freeze-concentration.html
dc.identifierGEA Niro. (2008). Niro Process Technology B.V. Melt Crystalization & wash column separation. GEA Niro Process Technology.
dc.identifierGoff, H. ., Verespej, E., & Jermann, D. (2003). Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochimica Acta, 399(1-2), 43–55. doi:10.1016/S0040-6031(02)00399-4
dc.identifierGoff, H. D., Caldwell, K. B., Stanley, D. W., & Maurice, T. J. (1993). The Influence of Polysaccharides on the Glass Transition in Frozen Sucrose Solutions and Ice Cream. Journal of Dairy Science, 76(5), 1268–1277. doi:10.3168/jds.S0022-0302(93)77456-1
dc.identifierHottot, A., Vessot, S., & Andrieu, J. (2007). Freeze drying of pharmaceuticals in vials: Influence of freezing protocol and sample configuration on ice morphology and freeze-dried cake texture. Chemical Engineering and Processing: Process Intensification, 46(7), 666–674. doi:10.1016/j.cep.2006.09.003
dc.identifierInternational Coffee Council. (2010). Development strategy for coffee, (September).
dc.identifierInternational Coffee Council. (2013, August). Informe mensual sobre el mercado de café, 1–6. Retrieved from http://dev.ico.org/documents/cy2012-13/cmr-0813-c.pdf
dc.identifierIritani, E., Katagiri, N., Okada, K., Cao, D.-Q., & Kawasaki, K. (2013). Improvement of concentration performance in shaking type of freeze concentration. Separation and Purification Technology, 120, 445–451. doi:10.1016/j.seppur.2013.10.015
dc.identifierJansen, H. (2001). CONCENTRACIÓN POR CONGELACIÓN DE DISOLUCIONES ACUOSAS: UN NUEVO MÉTODO PARA OBTENER PRODUCTOS INNOVADORES DE ALTA CALIDAD. Vigilancia Tecnológica En El Sector de Transformados Vegetales, 10, 13 – 15
dc.identifierKiani, H., & Sun, D.-W. (2011). Water crystallization and its importance to freezing of foods: A review. Trends in Food Science & Technology, 22(8), 407–426. doi:10.1016/j.tifs.2011.04.011
dc.identifierKoza, M. M., Hansen, T., May, R. P., & Schober, H. (2006). Link between the diversity, heterogeneity and kinetic properties of amorphous ice structures. Journal of NonCrystalline Solids, 352(42-49), 4988–4993. doi:10.1016/j.jnoncrysol.2006.02.162
dc.identifierKubota, N. (2011). Effects of cooling rate, annealing time and biological antifreeze concentration on thermal hysteresis reading. Cryobiology, 63(3), 198–209. doi:10.1016/j.cryobiol.2011.06.005
dc.identifierLi, B., & Sun, D.-W. (2002). Effect of power ultrasound on freezing rate during immersion freezing of potatoes. Journal of Food Engineering, 55(3), 277–282. doi:10.1016/S0260- 8774(02)00102-4
dc.identifierLiesebach, J., Rades, T., & Lim, M. (2003). A new method for the determination of the unfrozen matrix concentration and the maximal freeze-concentration. Thermochimica Acta, 401, 159–168.
dc.identifierLiu, L., Miyawaki, O., & Nakamura, K. (1997). Progressive Freeze-Concentration of Model Liquid Food. Food Engineering, 3(4), 348–352.
dc.identifierMendoza, R. E. E. (2012). EVALUACIÓN DE CARACTERES MORFOLÓGICOS Y ESTRUCTURALES DEL GRANO DE ARROZ VARIEDAD MORELOS A-98 MEDIANTE ANÁLISIS FRACTAL DE IMÁGENES DIGITALES. INSTITUTO POLITÉCNICO NACIONAL
dc.identifierMiyawaki, O., Kato, S., & Watabe, K. (2012). Yield improvement in progressive freezeconcentration by partial melting of ice. Journal of Food Engineering, 108(3), 377–382. doi:10.1016/j.jfoodeng.2011.09.013
dc.identifierMiyawaki, O., Liu, L., Shirai, Y., Sakashita, S., & Kagitani, K. (2005). Tubular ice system for scaleup of progressive freeze-concentration. Journal of Food Engineering, 69(1), 107–113. doi:10.1016/j.jfoodeng.2004.07.016
dc.identifierMoreno, F. L., Raventós, M., Hernández, E., & Ruiz, Y. (2014). Block freeze-concentration of coffee extract: Effect of freezing and thawing stages on solute recovery and bioactive compounds. Journal of Food Engineering, 120, 158–166. doi:10.1016/j.jfoodeng.2013.07.034
dc.identifierMoreno, F. L., Robles, C. M., Sarmiento, Z., Ruiz, Y., & Pardo, J. M. (2013). Effect of separation and thawing mode on block freeze-concentration of coffee brews. Food and Bioproducts Processing, (February), 1–7. doi:10.1016/j.fbp.2013.02.007
dc.identifierMullin, J. W. (2001a). Crystal growth. In Crystallization (Fourth., pp. 216–288). Oxford.
dc.identifierMullin, J. W. (2001b). Nucleation. In Crystallization (Fourth., pp. 181–215). Oxford.
dc.identifierMunson-McGee, S. H. (2014). D- and G-optimal experimental designs for the partition coefficient in freeze concentration. Journal of Food Engineering, 121, 80–86. doi:10.1016/j.jfoodeng.2013.08.018
dc.identifierNakagawa, K., Hottot, A., Vessot, S., & Andrieu, J. (2006). Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins freeze-drying. Chemical Engineering and Processing: Process Intensification, 45(9), 783– 791. doi:10.1016/j.cep.2006.03.007
dc.identifierNakagawa, K., Maebashi, S., & Maeda, K. (2009). Concentration of aqueous dye solution by freezing and thawing. The Canadian Journal of Chemical Engineering, 87(5), 779–787. doi:10.1002/cjce.20213
dc.identifierNakagawa, K., Maebashi, S., & Maeda, K. (2010). Freeze-thawing as a path to concentrate aqueous solution. Separation and Purification Technology, 73(3), 403–408. doi:10.1016/j.seppur.2010.04.031
dc.identifierNakagawa, K., Nagahama, H., Maebashi, S., & Maeda, K. (2010). Usefulness of solute elution from frozen matrix for freeze-concentration technique. Chemical Engineering Research and Design, 88, 718–724. doi:10.1016/j.cherd.2009.11.007
dc.identifierNasello, O. B., Di Prinzio, C. L., & Guzmán, P. G. (2005). Temperature dependence of “pure” ice grain boundary mobility. Acta Materialia, 53(18), 4863–4869. doi:10.1016/j.actamat.2005.06.022
dc.identifierNavarrete, N. M., Grau, A. M. A., Boix, A. C., & Maupoey, P. F. (1998). Transiciones de fase en alimentos. In U. P. de Valencia (Ed.), Termodinámica y Cinética de Sistemas Alimento Entorno (pp. 219–272). Valencia. Retrieved from http://books.google.com.co/books?id=bLQ_Lj6C4p8C&pg=PA112&lpg=PA112&dq=diagra ma+de+fases+sacarosa&source=bl&ots=e2yVTShqWx&sig=tnHRKzRM7YvDp6KRZ7AQHF U1Sf0&hl=es&sa=X&ei=hpyFUJDpJYSi8gT7wIHQCw&ved=0CBwQ6AEwAA#v=onepage&q =diagrama de fases sacarosa&f=false
dc.identifierOkawa, S., Ito, T., & Saito, A. (2009). Effect of crystal orientation on freeze concentration of solutions. International Journal of Refrigeration, 32(2), 246–252. doi:10.1016/j.ijrefrig.2008.06.001
dc.identifierOrrego Alzate, C. E. (2008). Congelación. In Congelación y Liofilización de Alimentos (pp. 1 – 43). Colombia: Orrego A.C.E.
dc.identifierOtero, L., Sanz, P., Guignon, B., & Sanz, P. D. (2012). Pressure-shift nucleation: A potential tool for freeze concentration of fluid foods. Innovative Food Science & Emerging Technologies, 13, 86–99. doi:10.1016/j.ifset.2011.11.003
dc.identifierPardo, J. M., Suess, F., & Niranjan, K. (2002). AN INVESTIGATION INTO THE RELATIONSHIP BETWEEN FREEZING RATE AND MEAN ICE CRYSTAL SIZE FOR COFFEE EXTRACTS, 80(September).
dc.identifierPedreschi, F., Mery, D., & Marique, T. (2008). Quality Evaluation and Control of Potato Chips and French Fries. In Computer Vision Technology for Food Quality Evaluation. Da-Wen Sun (pp. 545–566). Amsterdam.
dc.identifierPerea-Flores, M. de J. (2011). Efecto del secado por lecho fluidizado en la estructura de semillas de Ricinus communis y en la extracción de su aceite como fuente alternativa de biocombustibles. Instituto Politécnico Nacional. Retrieved from http://www.repositoriodigital.ipn.mx/handle/123456789/755/browse?value=Ricinus+co mmunis&type=subject
dc.identifierPetzold, G., & Aguilera, J. M. (2009). Ice Morphology: Fundamentals and Technological Applications in Foods. Food Biophysics, 4(4), 378–396. doi:10.1007/s11483-009-9136-5
dc.identifierPetzold, G., & Aguilera, J. M. (2013). Centrifugal freeze concentration. Innovative Food Science & Emerging Technologies. doi:10.1016/j.ifset.2013.05.010
dc.identifierPetzold, G., Niranjan, K., & Aguilera, J. M. (2013). Vacuum-assisted freeze concentration of sucrose solutions. Journal of Food Engineering, 115(3), 357–361. doi:10.1016/j.jfoodeng.2012.10.048
dc.identifierQuevedo, R., Carlos, L.-G., Aguilera, J. M., & Cadoche, L. (2002). Description of food surfaces and microstructural changes using fractal image texture analysis. Journal of Food Engineering, 53(4), 361–371. doi:10.1016/S0260-8774(01)00177-7
dc.identifierRahman, M. S. (2006). State diagram of foods: Its potential use in food processing and product stability. Trends in Food Science & Technology, 17(3), 129–141. doi:10.1016/j.tifs.2005.09.009
dc.identifierRatkje, S. K., & Flesland, O. (1995). Modelling the Freeze Concentration Process by Irreversible Thermodynamics. Entropy, 25, 553–567.
dc.identifierRaventós, M., Hernández, E., Auleda, J., & Ibarz, A. (2006). Concentration of aqueous sugar solutions in a multi-plate cryoconcentrator. Journal of Food Engineering, 79(2), 577–585. doi:10.1016/j.jfoodeng.2006.02.017
dc.identifierRoodenrijs, J. P. (1987). Apparatus for separating a mixture into solid and liquid component. United States.
dc.identifierRoos, Y. H. (1995a). Physical State and Molecular Mobility. In Phase Transitions in Foods (pp. 19–48). San Diego.
dc.identifierRoos, Y. H. (1995b). Water and Phase Transitions. In Phase Transitions in Foods (pp. 73–107). San Diego.
dc.identifierSánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2011). Freeze concentration of whey in a falling-film based pilot plant: Process and characterization. Journal of Food Engineering, 103(2), 147–155. doi:10.1016/j.jfoodeng.2010.10.009
dc.identifierSánchez, J., Ruiz, Y., Auleda, J. M., Hernandez, E., & Raventós, M. (2009). Review. Freeze Concentration in the Fruit Juices Industry. Food Science and Technology International, 15(4), 303–315. doi:10.1177/1082013209344267
dc.identifierSánchez, J., Ruiz, Y., Raventós, M., Auleda, J. M., & Hernández, E. (2010). Progressive freeze concentration of orange juice in a pilot plant falling film. Innovative Food Science & Emerging Technologies, 11(4), 644–651. doi:10.1016/j.ifset.2010.06.006
dc.identifierSanz Martínez, P. D., Guignon, B., & Otero García, L. M. (2011). MÉTODO DE CRIOCONCENTRACIÓN DE LÍQUIDOS. Retrieved from http://hdl.handle.net/10261/40595
dc.identifierSanz, P. D., & Otero, L. (2005). High-Pressure Freezing. In Da-Wen Sun (Ed.), Emerging technologies for food processing (pp. 627–652). London.
dc.identifierSchoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of Crystal Growth, 209, 122–129.
dc.identifierSei, T., Gonda, T., & Arima, Y. (2002). Growth rate and morphology of ice crystals growing in a solution of trehalose and water. Journal of Crystal Growth, 240(1-2), 218–229. doi:10.1016/S0022-0248(02)00875-8
dc.identifierShibkov, A. A., Golovin, Y. I., Zheltov, M. A., Korolev, A. A., & Leonov, A. A. (2003). Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water. Physica A, 319, 65–79. doi:10.1016/S0378-4371(02)01517-0
dc.identifierSingh, S. K., Kolhe, P., Wang, W., & Nema, S. (2009). Large-Scale Freezing of Biologics A Practitioner’s Review, Part One: Fundamental Aspects. BioProcess International, 7(9), 32– 44
dc.identifierThijssen H.A.C., Van Der Malen, B. (1981). IMPLICATIONS ON QUALITY OF ENERGY SAVINGS IN THE CONCENTRATION OF FOODS. Resources and Conservation, 7, 287–299
dc.identifierWakisaka, M., Shirai, Y., & Sakashita, S. (2001). Ice crystallization in a pilot-scale freeze wastewater treatment system. Change, 40, 201–208.
dc.identifierWilliams, P. M., Ahmad, M., & Connolly, B. S. (2013). Freeze desalination: An assessment of an ice maker machine for desalting brines. Desalination, 308, 219–224. doi:10.1016/j.desal.2012.07.037
dc.identifierhttp://hdl.handle.net/10818/10367
dc.identifier259274
dc.identifierTE06405
dc.description.abstractExtracto acuoso de café fue crioconcentrado utilizando la técnica de bloque total, evaluando el efecto de las variables de temperatura de calentamiento (TC= -10 y -5 °C) y tiempo de recocido (t= 0 y 12 h) sobre la eficiencia de concentración y la morfología de la estructura del hielo al aplicar ciclos de enfriamiento-calentamiento. Los resultados muestran que los efectos del la variable t y t*Tc, presentan un efecto significativo sobre la eficiencia de concentración, por lo tanto al aumentar la temperatura y los tiempos en los cuales es sometida la muestra al recocido, se podrá aumentar su concentración, viéndose modificados los parámetros morfométricos de los cristales, los cuales presentan una relación con la recuperación de solutos en crioconcentración.
dc.languagespa
dc.publisherUniversidad de La Sabana
dc.publisherMaestría en Diseño y Gestión de Procesos
dc.publisherFacultad de Ingeniería
dc.rightsopenAccess
dc.sourceUniversidad de La Sabana
dc.sourceIntellectum Repositorio Universidad de La Sabana
dc.subjectCafé -- Análisis -- Colombia
dc.subjectCafeína -- Análisis
dc.subjectCafeína -- Experimentos
dc.titleEfecto del recocido sobre la recuperación de solutos en crioconcentración en bloque de extracto de café
dc.typemasterThesis


Este ítem pertenece a la siguiente institución