masterThesis
Efecto del recocido sobre la recuperación de solutos en crioconcentración en bloque de extracto de café
Date
2014-04-25Registration in:
Aguilera, J. M. (2005). Why food microstructure? Journal of Food Engineering, 67(1-2), 3–11. doi:10.1016/j.jfoodeng.2004.05.050
Aider, M., & de Halleux, D. (2008a). Passive and microwave-assisted thawing in maple sap cryoconcentration technology. Journal of Food Engineering, 85(1), 65–72. doi:10.1016/j.jfoodeng.2007.07.025
Aider, M., & de Halleux, D. (2008b). Production of concentrated cherry and apricot juices by cryoconcentration technology. LWT - Food Science and Technology, 41(10), 1768–1775. doi:10.1016/j.lwt.2008.02.008
Aider, M., & de Halleux, D. (2009). Cryoconcentration technology in the bio-food industry: Principles and applications. LWT - Food Science and Technology, 42(3), 679–685. doi:10.1016/j.lwt.2008.08.013
Aider, M., de Halleux, D., & Akbache, A. (2007). Whey cryoconcentration and impact on its composition. Journal of Food Engineering, 82(1), 92–102. doi:10.1016/j.jfoodeng.2007.01.025
Aider, M., de Halleux, D., & Melnikova, I. (2007). Skim Milk Whey Cryoconcentration and Impact on the Composition of the Concentrated and Ice Fractions. Food and Bioprocess Technology, 2(1), 80–88. doi:10.1007/s11947-007-0023-0
Aider, M., de Halleux, D., & Melnikova, I. (2008). Gravitational and microwave-assisted thawing during milk whey cryoconcentration. Journal of Food Engineering, 88(3), 373–380. doi:10.1016/j.jfoodeng.2008.02.024
Aider, M., de Halleux, D., & Melnikova, I. (2009). Skim acidic milk whey cryoconcentration and assessment of its functional properties: Impact of processing conditions. Innovative Food Science & Emerging Technologies, 10(3), 334–341. doi:10.1016/j.ifset.2009.01.005
Aider, M., & Ounis, W. Ben. (2012). Skim milk cryoconcentration as affected by the thawing mode: gravitational vs. microwave-assisted. International Journal of Food Science & Technology, 47(1), 195–202. doi:10.1111/j.1365-2621.2011.02826.x
Akyurt, M., Zaki, G., & Habeebullah, B. (2002). Freezing phenomena in ice – water systems. Energy Conversion and Management, 43, 1773–1789.
Auleda, J. M., Raventós, M., Sánchez, J., & Hernández, E. (2011). Estimation of the freezing point of concentrated fruit juices for application in freeze concentration. Journal of Food Engineering, 105(2), 289–294. doi:10.1016/j.jfoodeng.2011.02.035
Belén, F., Benedetti, S., Sánchez, J., Hernández, E., Auleda, J. M., Prudêncio, E. S., … Raventós, M. (2013). Behavior of functional compounds during freeze concentration of tofu whey. Journal of Food Engineering, 116(3), 681–688. doi:10.1016/j.jfoodeng.2013.01.019
Belén, F., Sánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2012). One option for the management of wastewater from tofu production: Freeze concentration in a falling-film system. Journal of Food Engineering, 110(3), 364–373. doi:10.1016/j.jfoodeng.2011.12.036
Burdo, O. G., Kovalenko, E. A., & Kharenko, D. A. (2008). Intensification of the processes of low-temperature separation of food solutions. Time, 28, 311–316. doi:10.1016/j.applthermaleng.2006.02.035
Campos-Mendiola, R., Hernández-Sánchez, H., Chanona-Pérez, J. J., Alamilla-Beltrán, L., Jiménez-Aparicio, a., Fito, P., & Gutiérrez-López, G. F. (2007). Non-isotropic shrinkage and interfaces during convective drying of potato slabs within the frame of the systematic approach to food engineering systems (SAFES) methodology. Journal of Food Engineering, 83(2), 285–292. doi:10.1016/j.jfoodeng.2007.02.027
Chabarov, A., & Aider, M. (2013). Mathematical modeling and experimental validation of the mass transfer during unidirectional progressive cryoconcentration of skim milk. Innovative Food Science & Emerging Technologies, 1–9. doi:10.1016/j.ifset.2013.08.001
Chirife, J., & Buera, M. P. F. (1997). A Simple Model for Predicting the Viscosity of Sugar and Oligosaccharide Solutions. Science, 8774(97).
Delgado, A. E., & Sun, D. (2001). Heat and mass transfer models for predicting freezing processes - a review. Journal of Food Engineering, 47, 157–174.
Falguera, V., Aliguer, N., & Falguera, M. (2012). An integrated approach to current trends in food consumption: Moving toward functional and organic products? Food Control, 26(2), 274–281. doi:10.1016/j.foodcont.2012.01.051
Farhangdoust, S., Zamanian, a., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013
Fujioka, R., Wang, L. P., Dodbiba, G., & Fujita, T. (2013). Application of progressive freezeconcentration for desalination. Desalination, 319, 33–37. doi:10.1016/j.desal.2013.04.005
Gao, W., Habib, M., & Smith, D. W. (2009). Removal of organic contaminants and toxiciy from industrial effluents using freezing processes. Desalination, 245(1-3), 108–119. doi:10.1016/j.desal.2008.06.013
Gao, W., & Shao, Y. (2009). Freeze concentration for removal of pharmaceutically active compounds in water. Desalination, 249(1), 398–402. doi:10.1016/j.desal.2008.12.065
GEA Niro. (2008). Niro Process Technology B.V. Melt Crystalization & wash column separation. GEA Niro Process Technology.
Goff, H. ., Verespej, E., & Jermann, D. (2003). Glass transitions in frozen sucrose solutions are influenced by solute inclusions within ice crystals. Thermochimica Acta, 399(1-2), 43–55. doi:10.1016/S0040-6031(02)00399-4
Goff, H. D., Caldwell, K. B., Stanley, D. W., & Maurice, T. J. (1993). The Influence of
Polysaccharides on the Glass Transition in Frozen Sucrose Solutions and Ice Cream.
Journal of Dairy Science, 76(5), 1268–1277. doi:10.3168/jds.S0022-0302(93)77456-1
Hottot, A., Vessot, S., & Andrieu, J. (2007). Freeze drying of pharmaceuticals in vials: Influence
of freezing protocol and sample configuration on ice morphology and freeze-dried cake
texture. Chemical Engineering and Processing: Process Intensification, 46(7), 666–674.
doi:10.1016/j.cep.2006.09.003
International Coffee Council. (2010). Development strategy for coffee, (September).
Iritani, E., Katagiri, N., Okada, K., Cao, D.-Q., & Kawasaki, K. (2013). Improvement of
concentration performance in shaking type of freeze concentration. Separation and
Purification Technology, 120, 445–451. doi:10.1016/j.seppur.2013.10.015
Jansen, H. (2001). CONCENTRACIÓN POR CONGELACIÓN DE DISOLUCIONES ACUOSAS: UN
NUEVO MÉTODO PARA OBTENER PRODUCTOS INNOVADORES DE ALTA CALIDAD.
Vigilancia Tecnológica En El Sector de Transformados Vegetales, 10, 13 – 15
Kiani, H., & Sun, D.-W. (2011). Water crystallization and its importance to freezing of foods: A
review. Trends in Food Science & Technology, 22(8), 407–426.
doi:10.1016/j.tifs.2011.04.011
Koza, M. M., Hansen, T., May, R. P., & Schober, H. (2006). Link between the diversity,
heterogeneity and kinetic properties of amorphous ice structures. Journal of NonCrystalline Solids, 352(42-49), 4988–4993. doi:10.1016/j.jnoncrysol.2006.02.162
Kubota, N. (2011). Effects of cooling rate, annealing time and biological antifreeze
concentration on thermal hysteresis reading. Cryobiology, 63(3), 198–209.
doi:10.1016/j.cryobiol.2011.06.005
Li, B., & Sun, D.-W. (2002). Effect of power ultrasound on freezing rate during immersion
freezing of potatoes. Journal of Food Engineering, 55(3), 277–282. doi:10.1016/S0260-
8774(02)00102-4
Liesebach, J., Rades, T., & Lim, M. (2003). A new method for the determination of the unfrozen
matrix concentration and the maximal freeze-concentration. Thermochimica Acta, 401,
159–168.
Liu, L., Miyawaki, O., & Nakamura, K. (1997). Progressive Freeze-Concentration of Model Liquid
Food. Food Engineering, 3(4), 348–352.
Mendoza, R. E. E. (2012). EVALUACIÓN DE CARACTERES MORFOLÓGICOS Y ESTRUCTURALES
DEL GRANO DE ARROZ VARIEDAD MORELOS A-98 MEDIANTE ANÁLISIS FRACTAL DE
IMÁGENES DIGITALES. INSTITUTO POLITÉCNICO NACIONAL
Miyawaki, O., Kato, S., & Watabe, K. (2012). Yield improvement in progressive freezeconcentration by partial melting of ice. Journal of Food Engineering, 108(3), 377–382.
doi:10.1016/j.jfoodeng.2011.09.013
Miyawaki, O., Liu, L., Shirai, Y., Sakashita, S., & Kagitani, K. (2005). Tubular ice system for scaleup of progressive freeze-concentration. Journal of Food Engineering, 69(1), 107–113.
doi:10.1016/j.jfoodeng.2004.07.016
Moreno, F. L., Raventós, M., Hernández, E., & Ruiz, Y. (2014). Block freeze-concentration of
coffee extract: Effect of freezing and thawing stages on solute recovery and bioactive
compounds. Journal of Food Engineering, 120, 158–166.
doi:10.1016/j.jfoodeng.2013.07.034
Moreno, F. L., Robles, C. M., Sarmiento, Z., Ruiz, Y., & Pardo, J. M. (2013). Effect of separation
and thawing mode on block freeze-concentration of coffee brews. Food and Bioproducts
Processing, (February), 1–7. doi:10.1016/j.fbp.2013.02.007
Mullin, J. W. (2001a). Crystal growth. In Crystallization (Fourth., pp. 216–288). Oxford.
Mullin, J. W. (2001b). Nucleation. In Crystallization (Fourth., pp. 181–215). Oxford.
Munson-McGee, S. H. (2014). D- and G-optimal experimental designs for the partition
coefficient in freeze concentration. Journal of Food Engineering, 121, 80–86.
doi:10.1016/j.jfoodeng.2013.08.018
Nakagawa, K., Hottot, A., Vessot, S., & Andrieu, J. (2006). Influence of controlled nucleation by
ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins
freeze-drying. Chemical Engineering and Processing: Process Intensification, 45(9), 783–
791. doi:10.1016/j.cep.2006.03.007
Nakagawa, K., Maebashi, S., & Maeda, K. (2009). Concentration of aqueous dye solution by
freezing and thawing. The Canadian Journal of Chemical Engineering, 87(5), 779–787.
doi:10.1002/cjce.20213
Nakagawa, K., Maebashi, S., & Maeda, K. (2010). Freeze-thawing as a path to concentrate
aqueous solution. Separation and Purification Technology, 73(3), 403–408.
doi:10.1016/j.seppur.2010.04.031
Nakagawa, K., Nagahama, H., Maebashi, S., & Maeda, K. (2010). Usefulness of solute elution
from frozen matrix for freeze-concentration technique. Chemical Engineering Research
and Design, 88, 718–724. doi:10.1016/j.cherd.2009.11.007
Nasello, O. B., Di Prinzio, C. L., & Guzmán, P. G. (2005). Temperature dependence of “pure” ice
grain boundary mobility. Acta Materialia, 53(18), 4863–4869.
doi:10.1016/j.actamat.2005.06.022
Okawa, S., Ito, T., & Saito, A. (2009). Effect of crystal orientation on freeze concentration of
solutions. International Journal of Refrigeration, 32(2), 246–252.
doi:10.1016/j.ijrefrig.2008.06.001
Orrego Alzate, C. E. (2008). Congelación. In Congelación y Liofilización de Alimentos (pp. 1 –
43). Colombia: Orrego A.C.E.
Otero, L., Sanz, P., Guignon, B., & Sanz, P. D. (2012). Pressure-shift nucleation: A potential tool
for freeze concentration of fluid foods. Innovative Food Science & Emerging Technologies,
13, 86–99. doi:10.1016/j.ifset.2011.11.003
Pardo, J. M., Suess, F., & Niranjan, K. (2002). AN INVESTIGATION INTO THE RELATIONSHIP
BETWEEN FREEZING RATE AND MEAN ICE CRYSTAL SIZE FOR COFFEE EXTRACTS,
80(September).
Pedreschi, F., Mery, D., & Marique, T. (2008). Quality Evaluation and Control of Potato Chips
and French Fries. In Computer Vision Technology for Food Quality Evaluation. Da-Wen
Sun (pp. 545–566). Amsterdam.
Petzold, G., & Aguilera, J. M. (2009). Ice Morphology: Fundamentals and Technological
Applications in Foods. Food Biophysics, 4(4), 378–396. doi:10.1007/s11483-009-9136-5
Petzold, G., & Aguilera, J. M. (2013). Centrifugal freeze concentration. Innovative Food Science
& Emerging Technologies. doi:10.1016/j.ifset.2013.05.010
Petzold, G., Niranjan, K., & Aguilera, J. M. (2013). Vacuum-assisted freeze concentration of
sucrose solutions. Journal of Food Engineering, 115(3), 357–361.
doi:10.1016/j.jfoodeng.2012.10.048
Quevedo, R., Carlos, L.-G., Aguilera, J. M., & Cadoche, L. (2002). Description of food surfaces
and microstructural changes using fractal image texture analysis. Journal of Food
Engineering, 53(4), 361–371. doi:10.1016/S0260-8774(01)00177-7
Rahman, M. S. (2006). State diagram of foods: Its potential use in food processing and product
stability. Trends in Food Science & Technology, 17(3), 129–141.
doi:10.1016/j.tifs.2005.09.009
Ratkje, S. K., & Flesland, O. (1995). Modelling the Freeze Concentration Process by Irreversible
Thermodynamics. Entropy, 25, 553–567.
Raventós, M., Hernández, E., Auleda, J., & Ibarz, A. (2006). Concentration of aqueous sugar
solutions in a multi-plate cryoconcentrator. Journal of Food Engineering, 79(2), 577–585.
doi:10.1016/j.jfoodeng.2006.02.017
Roodenrijs, J. P. (1987). Apparatus for separating a mixture into solid and liquid component.
United States.
Roos, Y. H. (1995a). Physical State and Molecular Mobility. In Phase Transitions in Foods (pp.
19–48). San Diego.
Roos, Y. H. (1995b). Water and Phase Transitions. In Phase Transitions in Foods (pp. 73–107).
San Diego.
Sánchez, J., Hernández, E., Auleda, J. M., & Raventós, M. (2011). Freeze concentration of whey
in a falling-film based pilot plant: Process and characterization. Journal of Food
Engineering, 103(2), 147–155. doi:10.1016/j.jfoodeng.2010.10.009
Sánchez, J., Ruiz, Y., Auleda, J. M., Hernandez, E., & Raventós, M. (2009). Review. Freeze
Concentration in the Fruit Juices Industry. Food Science and Technology International,
15(4), 303–315. doi:10.1177/1082013209344267
Sánchez, J., Ruiz, Y., Raventós, M., Auleda, J. M., & Hernández, E. (2010). Progressive freeze
concentration of orange juice in a pilot plant falling film. Innovative Food Science &
Emerging Technologies, 11(4), 644–651. doi:10.1016/j.ifset.2010.06.006
Sanz, P. D., & Otero, L. (2005). High-Pressure Freezing. In Da-Wen Sun (Ed.), Emerging
technologies for food processing (pp. 627–652). London.
Schoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in
unidirectionally solidified collagen suspensions. Journal of Crystal Growth, 209, 122–129.
Sei, T., Gonda, T., & Arima, Y. (2002). Growth rate and morphology of ice crystals growing in a
solution of trehalose and water. Journal of Crystal Growth, 240(1-2), 218–229.
doi:10.1016/S0022-0248(02)00875-8
Shibkov, A. A., Golovin, Y. I., Zheltov, M. A., Korolev, A. A., & Leonov, A. A. (2003). Morphology
diagram of nonequilibrium patterns of ice crystals growing in supercooled water. Physica
A, 319, 65–79. doi:10.1016/S0378-4371(02)01517-0
Singh, S. K., Kolhe, P., Wang, W., & Nema, S. (2009). Large-Scale Freezing of Biologics A
Practitioner’s Review, Part One: Fundamental Aspects. BioProcess International, 7(9), 32–
44
Thijssen H.A.C., Van Der Malen, B. (1981). IMPLICATIONS ON QUALITY OF ENERGY SAVINGS IN
THE CONCENTRATION OF FOODS. Resources and Conservation, 7, 287–299
Wakisaka, M., Shirai, Y., & Sakashita, S. (2001). Ice crystallization in a pilot-scale freeze
wastewater treatment system. Change, 40, 201–208.
Williams, P. M., Ahmad, M., & Connolly, B. S. (2013). Freeze desalination: An assessment of an
ice maker machine for desalting brines. Desalination, 308, 219–224.
doi:10.1016/j.desal.2012.07.037
259274
TE06405
Author
Ruiz Pardo, Ruth Yolanda
Moreno Moreno, Fabian Leonardo
Institutions
Abstract
Extracto acuoso de café fue crioconcentrado utilizando la técnica de bloque total, evaluando el efecto de las variables de temperatura de calentamiento (TC= -10 y -5 °C) y tiempo de recocido (t= 0 y 12 h) sobre la eficiencia de concentración y la morfología de la estructura del hielo al aplicar ciclos de enfriamiento-calentamiento. Los resultados muestran que los efectos del la variable t y t*Tc, presentan un efecto significativo sobre la eficiencia de concentración, por lo tanto al aumentar la temperatura y los tiempos en los cuales es sometida la muestra al recocido, se podrá aumentar su concentración, viéndose modificados los parámetros morfométricos de los cristales, los cuales presentan una relación con la recuperación de solutos en crioconcentración.