dc.contributor | González Vargas, Andrés Mauricio | |
dc.contributor | Universidad Autónoma de Occidente (UAO) | |
dc.creator | Saavedra Arce, Brayam Andres | |
dc.date.accessioned | 2021-06-21T19:34:14Z | |
dc.date.accessioned | 2022-09-22T18:36:12Z | |
dc.date.available | 2021-06-21T19:34:14Z | |
dc.date.available | 2022-09-22T18:36:12Z | |
dc.date.created | 2021-06-21T19:34:14Z | |
dc.date.issued | 2021-06-16 | |
dc.identifier | https://hdl.handle.net/10614/13071 | |
dc.identifier | Repositorio Educativo Digital | |
dc.identifier | https://red.uao.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3454957 | |
dc.description.abstract | Los procesos biológico sal interior de las células, tales como la expresión génica, son el resultado de una serie de interacciones entre diferentes tipos de moléculas y reacciones que toman lugar dentro de un determinado sistema biológico. Dichos procesos pueden ser aproximados de forma práctica a través del uso de ecuaciones diferenciales. Sin embargo, en la experimentación, el producto de un proceso de expresión génica puede variar a lo largo de una población de células homogéneas. Dicha población puede ser estudiada in silico mediante la estimación de los parámetros que caracterizan su comportamiento. Los métodos computacionales por los cuales se simula y se modela la expresión de una población son tareas que requieren de un gran conocimiento tanto a nivel biológico como de los algoritmos utilizados para su aproximación. Por lo tanto, el objetivo de este trabajo es proponer una herramienta para el modelado de la expresión génica de poblaciones celulares. En primer lugar, se recopilaron los aspectos fundamentales tenidos en cuenta por el paradigma de la biología de sistemas, para plantear una metodología de diseño de la herramienta e implementar algunos algoritmos que permitan obtener una introducción en el área. En este trabajo, se desarrolla una interfaz de usuario mediante la cual las personas interesadas en aprender sobre sistemas biológicos en poblaciones celulares puedan comprender conceptos básicos sobre la definición del sistema, su simulación a partir de diferentes fuentes de variabilidad y su posterior modelado para estimar los parámetros que las caracterizan. La herramienta se implementa en software de uso libre, de tal manera que sea posible acceder a ella de forma abierta. Así, permitiendo una potencial modificación, mejora, o uso de los algoritmos que integran la herramienta. Por último, se evalúa la usabilidad de la herramienta mediante la elaboración de la documentación de su uso y la creación de una experiencia educativa dirigida a estudiantes de Ingeniería Biomédica, en la cual se presenta todo el proceso de modelado de una población celular a través de un caso de estudio | |
dc.description.abstract | Biological processes inside cells, such as gene expression, are the outcome of a series of interactions between different kinds of molecules and reactions that take place in a biological system. These processes can be approximated in a practical way usingdifferential equations. However, in experimentation, the product of a gene expression process might be different throughout a homogeneous cell population. In silico, such a population can be studied through the estimation of the parameters that characterize its behavior.Computational methods used to simulate and model the expression of a population are tasks that require having a good knowledge of both at abiological level and algorithms for their approximation. Therefore, the aim of this work is to propose a tool for modeling the gene expression of cell populations. First, fundamental aspects of the biological system paradigm are gathered to present a tool design methodology and implement some algorithms that allow to introduce beginners to the field. Inthis work, a user interface is developed so it could help others interested in biological systems in cell populations to obtain insights about basic topics on biological systems definition, simulatingfrom several variability sources and subsequent modelling to estimate parameters.Freely usable software is used for the tool implementation;thus, it is possible to get open access to it and potentially modify, enhance,or use the implemented algorithms.Lastly, tool usability is assessed through the creation of user documentation and a learning experience aimed at students ofBiomedical Engineering.The latter presents the general process of modelling a cell population describing a case study | |
dc.language | spa | |
dc.publisher | Universidad Autónoma de Occidente (UAO) | |
dc.publisher | Ingeniería Biomédica | |
dc.publisher | Departamento de Automática y Electrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Cali | |
dc.relation | Almquist, J. (2017). Kinetic Models in Life Science. https://publications.lib.chalmers.se/records/fulltext/253263/253263.pdf | |
dc.relation | Barizien, A. (2019). Studying the variability of bacterial growth in microfluidic droplets (Doctoral dissertation). Brownlee, J. (2021). A Gentle Introduction to Stochastic Optimization Algorithms [en línea]. Obtenido de https://machinelearningmastery.com/stochasticoptimization- for-machine-learning/. | |
dc.relation | Cao, Y., Li, H., y Petzold, L. (2004). Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. The journal of chemical physics, 121(9), 4059-4067. | |
dc.relation | Cinquemani, E. (2019). Identification, estimation and control of gene expression and metabolic network dynamics (Doctoral dissertation, Université Grenoble- Alpes, ED MSTII). | |
dc.relation | Duveau, F., Hodgins-Davis, A., Metzger, B. P., Yang, B., Tryban, S., Walker, E. A., y Wittkopp, P. J. (2018). Fitness effects of altering gene expression noise in Saccharomyces cerevisiae. Elife, 7, e37272. | |
dc.relation | El Samad, H., Khammash, M., Petzold, L., y Gillespie, D. (2005). Stochastic modelling of gene regulatory networks. International Journal of Robust and Nonlinear Control: IFAC‐Affiliated Journal, 15(15), 691-711. | |
dc.relation | Filippi, S., Barnes, C. P., Kirk, P. D., Kudo, T., Kunida, K., McMahon, S. S., y Stumpf, M. P. (2016). Robustness of MEK-ERK dynamics and origins of cell-to-cell variability in MAPK signaling. Cell reports, 15(11), 2524-2535. | |
dc.relation | Gillespie, D. T., (1977, May). Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry, Vol. 81, No. 25, 1977. | |
dc.relation | Gillespy2 1.5.7. pypi.org. Python software foundation © 2021. | |
dc.relation | Gonzalez, A. M., Uhlendorf, J., Schaul, J., Cinquemani, E., Batt, G., & Ferrari- Trecate, G. (2013, July). Identification of biological models from single-cell data: a comparison between mixed-effects and moment-based inference. In 2013 European Control Conference (ECC) (pp. 3652-3657). IEEE. | |
dc.relation | Gonzalez, A. M. (2014). Modeling of biological processes in cell populations. Doctoral dissertation, University of Pavia. | |
dc.relation | González, A. M., Cinquemani, E., y Ferrari, G., (2016). Validation methods for population models of gene expression dynamics. IFAC-Papers Online, 49(26), 114-119. | |
dc.relation | Higham, D. J., (2008). Modeling and simulating chemical reactions. Society for Industrial and Applied Mathematics. SIAM REVIEW. Vol. 50, No. 2, pp. 347 – 368. | |
dc.relation | Ilie, S., Enright, W. H., y Jackson, K. R., (2009). Numerical solution of stochastic models of biochemical kinetics. CANADIAN APPLIED, MATHEMATICS QUARTERLY, Vol 17, No 3. | |
dc.relation | Janzén, D., (2012). Standard Two-Stage and Nonlinear mixed effect modelling for determination of cell-to-cell variation of transport parameters in Saccharomyces cerevisiae. | |
dc.relation | Klipp, E., Liebermeister, W., Wierling, C., y Kowald, A. (2016). Systems biology: a textbook. | |
dc.relation | John Wiley & Sons. Kitano, H., (2002). Systems Biology: A Brief Overview. Systems Biology: The Genome, Legome, and Beyond. Vol. 295. | |
dc.relation | Lavielle, M. (2014). Mixed effects models for the population approach: models, tasks, methods, and tools. Chapman and Hall/CRC. | |
dc.relation | Lei, J., (2011). Stochastic modeling in systems biology. Zhou Pei-Yuan Center for Applied Mathematics. Liebermeister, W. (2012). Construction and control analysis of biochemical network models (Doctoral dissertation, Humboldt-Universität zu Berlin).Lixoft ® 2021. | |
dc.relation | Llamosi, A., Gonzalez-Vargas, A. M., Versari, C., Cinquemani, E., Ferrari-Trecate, G., Hersen, P., y Batt, G. (2016). What population reveals about individual cell identity: single-cell parameter estimation of models of gene expression in yeast. PLoS computational biology, 12(2), e1004706. | |
dc.relation | Loos, C., y Hasenauer, J. (2019). Mathematical modeling of variability in intracellular signaling. arXiv preprint arXiv:1904.08182. | |
dc.relation | Marguet, A., Lavielle, M., y Cinquemani, E. (2019). Inheritance and variability of kinetic gene expression parameters in microbial cells: modeling and inference from lineage tree data. Bioinformatics, 35(14), i586-i595. | |
dc.relation | Maruthi, L. R., Tkachev, I., Carta, A., Cinquemani, E., Hersen, P., Batt, G., y Abate, A. (2014, November). Towards real-time control of gene expression at the single cell level: a stochastic control approach. In International Conference on Computational Methods in Systems Biology (pp. 155-172). | |
dc.relation | Springer, Cham. Myung, I. J. (2003). Tutorial on maximum likelihood estimation. Journal of mathematical Psychology, 47(1), 90-100. | |
dc.relation | Pájaro Diéguez, M. (2017). Mathematical modelling, analysis and numerical simulation for a general class of gene regulatory networks (Doctoral dissertation, Programa de doutoramento en Métodos Matemáticos e Simulación Numérica en Enxeñaría e Ciencias Aplicadas (RD 99/2011)). | |
dc.relation | Rackauckas, C. (2017). A Comparison between Differential Equation Solver Suites in MATLAB, R, Julia, Python, C, Mathematica, Maple, and Fortran [en línea]. Obtenido de https://www.stochasticlifestyle.com/comparisondifferential- equation-solver-suites-matlab-r-julia-python-c-fortran/. | |
dc.relation | Ruess, J., y Lygeros, J. (2013, December). Identifying stochastic biochemical networks from single-cell population experiments: A comparison of approaches based on the Fisher information. In 52nd IEEE Conference on Decision and Control (pp. 2703-2708). IEEE. | |
dc.relation | Schnoerr, D., Sanguinetti, G., y Grima, R., 2015. Comparison of different momentclosure approximations for stochastic chemical kinetics. The journal of chemical physics 143, 185101. | |
dc.relation | Shlens, J. (2014). Notes on Kullback-Leibler divergence and likelihood. arXiv preprint arXiv:1404.2000. | |
dc.relation | Singh, A., y Soltani, M. (2013). Quantifying intrinsic and extrinsic variability in stochastic gene expression models. Plos one, 8(12), e84301. | |
dc.relation | Stan, G. B. (2017). Modelling in biology. Imperial College London. Toni, T., y Tidor, B. (2013). Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology. PLoS computational biology, 9(3), e1002960. | |
dc.relation | Uhlendorf, J., Bottani, S., Fages, F., Hersen, P., & Batt, G. (2011). Towards realtime control of gene expression: Controlling the hog signaling cascade. In Biocomputing 2011 (pp. 338-349). | |
dc.relation | Wang, D., Stapor, P., y Hasenauer, J. (2019). Dirac mixture distributions for the approximation of mixed effects models. IFAC-PapersOnLine, 52(26), 200- 206. | |
dc.relation | Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., y Koeppl, H. (2012). Moment-based inference predicts bimodality in transient gene expression. Proceedings of the National Academy of Sciences, 109(21), 8340-8345. | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights | Derechos Reservados - Universidad Autónoma de Occidente, 2021 | |
dc.subject | Ingeniería Biomédica | |
dc.subject | Sistema biológico | |
dc.subject | Expresión génica | |
dc.subject | Simulación | |
dc.subject | Modelando | |
dc.subject | Inferencia de parámetros | |
dc.title | Desarrollo de una herramienta de software libre para el modelado de la expresión génica de poblaciones celulares | |
dc.type | Trabajo de grado - Pregrado | |