dc.contributorFranco Guzmán, Ediguer Enrique
dc.creatorMartínez Holguin, José Alberto
dc.creatorReyes Arana, Jesús David
dc.date.accessioned2021-03-24T14:14:32Z
dc.date.accessioned2022-09-22T18:29:06Z
dc.date.available2021-03-24T14:14:32Z
dc.date.available2022-09-22T18:29:06Z
dc.date.created2021-03-24T14:14:32Z
dc.date.issued2021-03-10
dc.identifierhttps://hdl.handle.net/10614/12909
dc.identifierUniversidad Autónoma de Occidente (UAO)
dc.identifierRepositorio Educativo Digital
dc.identifierhttps://red.uao.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3452406
dc.description.abstractLos materiales compuestos son requeridos en aplicaciones donde se necesita una alta relación resistencia/peso. Sin embargo, debido a la anisotropía y a la falta de normativas y procesos de fabricación estandarizados, sus propiedades varían considerablemente. Por lo general, para caracterizar estos materiales se usan ensayos mecánicos destructivos, los cuales son muchas veces insuficientes para caracterizar por completo el tensor de rigidez. Por lo tanto, la búsqueda de técnicas alternativas son necesarias. En este trabajo se usa la transmisión de ondas ultrasónicas para caracterizar elásticamente materiales compuestos. Inicialmente se abordan los conceptos teóricos requeridos, tales como los principios básicos de ultrasonido y la propagación de ondas en medios anisotrópicos. Posteriormente, se explica la técnica de medición y el procesamiento de las señales. Además, se presenta el diseño del montaje experimental, incluyendo el sistema de posicionamiento de los transductores ultrasónicos, la sujeción y rotación de la muestra. Para ajustar la técnica de medición se caracterizaron materiales isotrópicos de constantes elásticas bien conocidas, como acero 1045, aluminio 1060 y vidrio. Luego se realizó la medición con muestras de materiales compuestos, tales como epoxi-fibra de carbono unidireccional, epoxi-fibra de vidrio multidireccional, epoxi-fibra de fique pulverizada y epoxi-fibra de fique unidireccional. Dichos datos se analizan para obtener las constantes elásticas. Finalmente, se verificaron los resultados obtenidos con los disponibles en la literatura y/o los ensayos mecánicos realizados en el laboratorio de la universidad.
dc.description.abstractComposite materials are required in applications where a high strength-to-weight ratio is needed. However, due to anisotropy and the lack of regulations and standardization in the manufacturing processes, their properties considerably vary. In general, destructive mechanical tests are used to characterize these materials, which are often insufficient to fully characterize the stiffness tensor. Therefore, alternative caracterization techniques are required. In this work, the ultrasonic through transmission technique is used to elastically characterize composite materials. Initially, the required theoretical concepts, such as the basic principles of ultrasound and the propagation of waves in anisotropic media, are addressed. Later, the measurement technique and signal processing are explained. In addition, the design of the experimental setup is shown, including the positioning system of the ultrasonic transducers, the fastening and rotation of the sample. To adjust the measurement technique, isotropic materials (1045 steel, 1060 aluminum and glass) with known elastic constants were characterized. The measurement was then carried out on samples of composite materials, such as unidirectional carbon fiber, multi-directional fiberglass, powdered fique fiber and unidirectional fique fiber in epoxy matrix. Data were analyzed and elastic constants were obtained. Finally, the results obtained were verified with those available in the literature or with mechanical tests carried out in the university laboratory
dc.languagespa
dc.publisherUniversidad Autónoma de Occidente (UAO)
dc.publisherIngeniería Mecánica
dc.publisherDepartamento de Energética y Mecánica
dc.publisherFacultad de Ingeniería
dc.publisherCali
dc.relation[1] L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics. John Wyle and Sons, 1999.
dc.relation[2] N. D. T. R. Center, “Pagina creada por profesionales en evaluaciones no destructivas y educadores alrededor del mundo,” Accedido en 03-10-2020. [Online]. Available: https://www.nde-ed.org/EducationResources/CommunityCollege/ Ultrasonics/cc ut index.htm
dc.relation[3] F. Paris, Introducci ´on al an´ alisis y dise ˜no con materiales compuestos. Sevilla, España: Universidad de Sevilla. Escuela T´ecnica Superior de Ingenieros Industriales, 2008.
dc.relation[4] J. Pruez, S. Shoukry, G. Williams, and M. Shoukry, “Lightweight composite materials for heavy duty vehicles,” US Department of Energy, Office of Energy Efficiency and Renewable Energy, National Energy Technology Laboratory, Tech. Rep. DE-FC26- 08NT02353, 08 2013.
dc.relation[5] M.-S. Scholz, J.P. Blanchfield, L.D. Bloom, B.H. Coburn, M. Elkington, J.D. Fuller, M.E. Gilbert,S.A. Muflahi, M.F. Pernice, S.I. Rae, J.A. Trevarthen, S.C. White, P.M. Weaver & I.P. Bond, “The use of composite materials in modern orthopaedic medicineand prosthetic devices: A review.” Elsevier, 2011. [6] V. Fombuena Borr`as, “Determinación de inclusiones porosas y delaminaciones en materiales compuestos mediante ultrasonidos,” Universitat Politécnica de Valencia (UPV), 2016.
dc.relation[7] Whitea, S.R., Matherb, P.T. & Smith, M.J., “Characterization of the cure-state of dgeba-dds epoxy using ultrasonic, dynamic mechanical, and thermal probes.” Polymer Engineering and Science, vol. 42, pp. 51–67, 2002.
dc.relation[8] J. Zimmer and J. Cost, “Determination of the elastic constants of a unidirectional fiber composite using ultrasonic velocity measurements,” The Journal of the Acoustical Society of America, vol. 47, no. 3, pp. 795–803, 1970.
dc.relation[9] E. Franco, J. Meza, and F. Buiochi, “Measurement of elastic properties of materials by the ultrasonic through-trasnmission technique,” Revista Dyna, vol. 78, no. 168, pp. 59–64, 2011.
dc.relation[10] M. Markham, “Measurement of the elastic constants of fiber composites by ultrasonics,” Composites, vol. 11, pp. 145–149, 1970.
dc.relation[11] W. C. V. Buskirk, S. C. Cowin, and R. C. Jr., “A theory of acoustic measurement of the elastic constants of a general anisotropic solid,” Journal of Materials Science, vol. 21, no. 8, pp. 2759–2762, 1986.
dc.relation[12] S. Rokhlin and W. Wang, “Critical angle measurement of elastic constants in composite material,” The Journal of the Acoustical Society of America, vol. 86, no. 5, pp. 1876–1882, 1989.
dc.relation[13] A. Castellano, P. Foti, A. Fraddosio, S. Marzano, and M. D. Piccioni, “Mechanical characterization of cfrp composites by ultrasonic immersion tests: Experimental and numerical approaches,” Composites: Part B, vol. 66, no. 5, pp. 299–310, 2014.
dc.relation[14] C. Aristegui and S. Baste, “Optimal recovery of the elasticity tensor of general anisotropic materials from ultrasonic velocity data,” The Journal of the Acoustical Society of America, vol. 101, no. 2, pp. 813–833, 1997.
dc.relation[15] K. Balasubramanian and S. Whitney, “Ultrasonic through-transmission characterization of thick fiber-reinforced composites,” NDT & E International, vol. 29, no. 4, pp. 225–236, 1996.
dc.relation[16] S. Baste and J. M. Morvan, “Under load strain partition of a ceramic matrix composite using an ultrasonic method,” Experimental Mechanics, vol. 36, no. 2, pp. 148–154, 1996.
dc.relation[17] B. Hosten, “Stiffness matrix invariants to validate the characterization of composite materials with ultrasonic methods,” Ultrasonics, vol. 30, no. 6, pp. 365–370, 1992.
dc.relation[18] C. A. Meza, J. F. Pazos-Ospina, E. E. Franco, J. L. Ealo, D. A. Collazos-Burbano, and G. F. C. Garcia, “Ultrasonic determination of the elastic constants of epoxy-natural fiber composites,” Physics Procedia, vol. 70, pp. 467–470, 2015.
dc.relation[19] T. K. Bader, F. Dastoorian, G. Ebrahimi, G. Unger, O. Lahayne, C. Hellmich, and B. Pichler, “Combined ultrasonic-mechanical characterization of orthotropic elastic properties of an unrefined bagasse fiber-polypropylene composite,” Composites Part B: Engineering, vol. 95, pp. 96–104, 2016.
dc.relation[20] E. E. Franco, M. A. B. Andrade, J. San-Miguel, F. Buiochi, and J. C. Adamowski, “Determination of the acoustic properties of tungsten/epoxy and tungsten/polyurethane composites using ultrasonic transmission technique,” in Proceedings of the 18th International Congress of Mechanical Engineering - COBEM 2005. Ouro Preto - MG, Brazil: ABCM, 2005.
dc.relation[21] A. N. M. Daud, R. Jaafar, S. K. Ayop, M. I. H. Yaacob, and M. S. Rohani, “Elastic constant determination of hardwoods using ultrasonic insertion technique,” Ultrasonics, vol. 75, pp. 194–198, 2017.
dc.relation[22] J. C. Adamowski, M. A. B. Andrade, E. E. Franco, and F. Buiochi, “Ultrasonic throughtransmission characterization of fiber reinforced composites using a large aperture receiver,” in Proceedings of the International Congress on Ultrasonics - ICU 2007, vol. Session S15: Ultrasonics of fibre-reinforced composite materials, Paper ID 1183. Vienna: icultrasonics.org, 2007.
dc.relation[23] C. A. Meza, E. E. Franco, and J. L. Ealo, “Implementation of the ultrasonic through-transmission technique for the elastic characterization of fiber-reinforced laminated composite,” DYNA, vol. 86, pp. 153 – 161, 03 2019. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci arttext& pid=S0012-73532019000100153&nrm=iso
dc.relation[24] A. F. R. y Diego J. Tasc´on, “Medición de propiedades elásticas de materiales isotrópicos por ultranonido,” Master’s thesis, Universidad Autónoma de Occidente, 2013.
dc.relation[25] E. Morales, “Modelado, construcción y caracterización de transductores de ultrasonido para ensayos no destructivos,” Master’s thesis, Universidad Autónoma de Occidente, 2012.
dc.relation[26] J. Meza, E. Franco, M. Farias, F. Buiochi, R. Souza, and J. Cruz, “Medición del módulo de elasticidad en materiales de ingenier´ıa utilizando la técnica de identificación instrumentada y de ultrasonido,” Revista de Metalurgia, vol. 44, no. 168, pp. 52–65, 2008.
dc.relation[27] W. A. Cooke, “Development of ultrasonic techniques for characterization of liquid mixtures,” Master’s thesis, The University of Western Ontario, 11 2016.
dc.relation[28] D. Pandey and S. Pandey, “Ultrasonics: A technique of material characterization,” in Acoustic Waves, D. Dissanayake, Ed. Rijeka: IntechOpen, 2010, ch. 18. [Online]. Available: https://doi.org/10.5772/10153
dc.relation[29] K. Fredagsvik, “Use of ultrasonic and acoustic sensors for characterization of liquidparticle flow and evaluation of hole cleaning efficiency,” Master’s thesis, University of Stavanger, 6 2014.
dc.relation[30] V. Bucur, Acoustics of Wood. Springer Berlin Heidelberg, 2005.
dc.relation[31] A. Bower, Applied Mechanics of Solids. CRC Press, 2009.
dc.relation[32] I. Daniel and O. Ishai, Engineering Mechanics of Composite Materials. New York: Oxford University Press, 2006.
dc.relation[33] J. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices. New York: Oxford University Press, 1993.
dc.relation[34] G. Dvorak, Micromechanics of Composite Materials, ser. Solid Mechanics and Its Applications. Springer Netherlands, 2012.
dc.relation[35] S. Rokhlin, D. Chimenti, and P. Nag, Physical Ultrasonics of Composites. New York: Oxford University Press, 2011.
dc.relation[36] M. Sun, “Optimal recovery of elastic properties for anisotropic materials through ultrasonic measurement,” Master’s thesis, The University of Maine, 2002.
dc.relation[37] G. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing. Prentice Hall PTR, 1987.
dc.relation[38] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Se˜nales y sistemas, 2nd ed. New Jersey: Prentice Hall & IBD, 1998.
dc.relation[39] S. kramer, Geotechnical earthquake engineering. Prentice-Hall, Inc, 1996.
dc.relation[40] F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Physical review B, vol. 90, no. 224104, 2014.
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos reservados - Universidad Autónoma de Occidente, 2021
dc.subjectIngeniería Mecánica
dc.subjectUltrasonido
dc.subjectMaterial compuesto
dc.titleBanco de pruebas para la caracterización elástica de materiales compuestos mediante ultrasonido
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución