dc.creatorSuescún-Díaz, Daniel
dc.creatorLozano Parada, Jaime Humberto
dc.creatorRasero, Diego
dc.date.accessioned2019-11-14T16:48:20Z
dc.date.accessioned2022-09-22T18:27:33Z
dc.date.available2019-11-14T16:48:20Z
dc.date.available2022-09-22T18:27:33Z
dc.date.created2019-11-14T16:48:20Z
dc.date.issued2019-05-05
dc.identifierSuescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616
dc.identifier1881-1248 (en línea)
dc.identifier0022-3131 (impresa)
dc.identifierhttp://hdl.handle.net/10614/11498
dc.identifierhttps://doi.org/10.1080/00223131.2019.1611502
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3451746
dc.description.abstractA new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational cost
dc.languageeng
dc.publisherTaylor and Francis
dc.relation(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254
dc.relationAnsari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857
dc.relationBinney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223
dc.relationHoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-X
dc.relationTamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345
dc.relationSuescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002
dc.relationSuescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times
dc.relationMalmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006
dc.relationSuescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949
dc.relationSuescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842
dc.relationDuderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): Wiley
dc.relationPalma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016
dc.relationHaykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): Wiley
dc.relationDiniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University Press
dc.relationKitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866
dc.relationJournal of Nuclear Science and Technology, volumen 56, issue 7, páginas 608-616, (july, 2019)
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rightsDerechos Reservados - Universidad Autónoma de Occidente
dc.source(1987) Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol.,;77:247–254
dc.sourceAnsari, S.A. Development of On-Line Reactivity Meter for Nuclear Reactors (1991) IEEE Transactions on Nuclear Science, 38 (4), pp. 946-952. Cited 31 times. doi: 10.1109/23.83857
dc.sourceBinney, Stephen E., Bakir, Alla J.M. Design and development of a personal-computer-based reactivity meter for a research reactor (1989) Nuclear Technology, 85 (1), pp. 12-21. Cited 18 times. doi: 10.13182/NT89-A34223
dc.sourceHoogenboom, J.E., van der Sluijs, A.R. Neutron source strength determination for on-line reactivity measurements (1988) Annals of Nuclear Energy, 15 (12), pp. 553-559. Cited 38 times. doi: 10.1016/0306-4549(88)90059-X
dc.sourceTamura, S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain (Open Access) (2003) Journal of Nuclear Science and Technology, 40 (3), pp. 153-157. Cited 25 times. doi: 10.1080/18811248.2003.9715345
dc.sourceSuescún Díaz, D., Senra Martinez, A., Carvalho Da Silva, F. Calculation of reactivity using a finite impulse response filter (2008) Annals of Nuclear Energy, 35 (3), pp. 472-477. Cited 13 times. doi: 10.1016/j.anucene.2007.07.002
dc.sourceSuescún Díaz, D., Senra Martinez, A. Finite differences with exponential filtering in the calculation of reactivity (2010) Kerntechnik, 75 (4), pp. 210-213. Cited 7 times
dc.sourceMalmir, H., Vosoughi, N. On-line reactivity calculation using Lagrange method (2013) Annals of Nuclear Energy, 62, pp. 463-467. Cited 9 times. doi: 10.1016/j.anucene.2013.07.006
dc.sourceSuescún-Díaz, D., Bonilla-Londoño, H.F., Figueroa-Jimenez, J.H. Savitzky–Golay filter for reactivity calculation (2016) Journal of Nuclear Science and Technology, 53 (7), pp. 944-950. Cited 3 times. http://www.tandfonline.com/loi/tnst20 doi: 10.1080/00223131.2015.1082949
dc.sourceSuescún-Díaz, D., Causil, D.A.R., Figueroa-Jimenez, J.H. Adams-bashforth-moulton method with savitzky-golay filter to reduce reactivity fluctuations (2017) Kerntechnik, 82 (6), pp. 674-677. http://www.hanser-elibrary.com/doi/pdf/10.3139/124.110842 doi: 10.3139/124.110842
dc.sourceDuderstadt, J.J., Hamilton, L.J. (1976) Nuclear reactor analysis. Cited 1336 times. New York (NY): Wiley
dc.sourcePalma, D.A.P., Martinez, A.S., Gonçalves, A.C. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor (2009) Annals of Nuclear Energy, 36 (9), pp. 1469-1471. Cited 15 times. doi: 10.1016/j.anucene.2009.06.016
dc.sourceHaykin, S., Veen, B.V. (1999) Signal and system. Cited 309 times. New York (NY): Wiley
dc.sourceDiniz, R.P.S., Da Silva, B.E.A., Netto, L.S. (2010) Digital signal processing: system analysis and design. Cited 195 times. Cambridge: Cambridge University Press
dc.sourceKitano, A., Itagaki, M., Narita, M. Memorial-index-based inverse kinetics method for continuous measurement of reactivity and source strength (2000) Journal of Nuclear Science and Technology, 37 (1), pp. 53-59. Cited 11 times. Doi: 10.1080/18811248.2000.9714866
dc.subjectReactivity
dc.subjectNuclear power plant
dc.subjectNuclear reactor
dc.subjectNumerical simulation
dc.titleNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución