dc.contributor | Cristancho Mejía, Fernando | |
dc.contributor | Romero Ordóñez, Fernando Elí | |
dc.contributor | Grupo de Física Nuclear de la Universidad Nacional | |
dc.creator | Cipagauta Mora, Jennifer Brigitte | |
dc.date.accessioned | 2022-06-03T14:13:36Z | |
dc.date.available | 2022-06-03T14:13:36Z | |
dc.date.created | 2022-06-03T14:13:36Z | |
dc.date.issued | 2022-06-02 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81499 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | A los isótopos radiactivos $^{232}$Th, $^{238}$U y $^{40}$K se les conoce por sus siglas en inglés
como NORM (Normally Occurring Radioactive Materials). Se tomaron 25 muestras de agua en la zona de estudio, el Valle del Magdalena Medio, de donde se determinaron las concentraciones de estos radionúcleos usando un sistema de espectroscopía gamma de alta resolución. Determinando el umbral de decisión y límite de detección se encontró que 7 muestras tienen presencia de $^{238}$U, 2 muestras contienen $^{40}$K pero estos niveles de uranio y potasio están por debajo del límite de detección. Adicionalmente, se reporta que ninguna de las muestras tiene concentración de actividad de torio superior al límite de decisión. (Texto tomado de la fuente) | |
dc.description.abstract | The radioactive isotopes $^{232}$Th, $^{238}$U y $^{40}$K are known as NORM (Normally Occurring Radioactive Materials). Taking a series of water samples in the study zone, the Middle Magdalena Valley, the concentration of these radionuclides is determined using a high-resolution gamma spectroscopy system. Determining the decision threshold and detection limit, it was found that 7 samples had the presence of $^{238}$U, 2 samples contained $^{40}$K but these uranium and potassium levels are below the detection limit. Additionally, it is reported that none of the samples has a thorium activity concentration above the decision limit. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Física | |
dc.publisher | Departamento de Física | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | International Atomic Energy Agency. Preparation and certification of IAEA gamma-ray spectrometry reference materials RGU-1, RGTh-U and RGK-1, 1987. | |
dc.relation | Sreenath Gupta. Natural Gas: Extraction to End Use. BoD--Books on Demand, 2012. | |
dc.relation | International Atomic Energy Agency. Extent of environmental contamination by naturally
occurring radioactive material (norm) and technological options for mitigation.
Technical report, International Atomic Energy Agency, 2003. | |
dc.relation | K. P. Smith. An overview of naturally occurring radioactive materials (norm) in the
petroleum industry. Technical report, Argonne National Lab., IL (United States)., 1992. | |
dc.relation | M Arenas et al. Proyecto MEGIA: Estudio de la Demanda del Agua en el Sector Norte
del Valle Medio del Magdalena. Producto No. 6. Technical report, Universidad Nacional
de Colombia, 2020. | |
dc.relation | William R Leo. Techniques for nuclear and particle physics experiments: a how-to
approach. Springer Science & Business Media, 2012. | |
dc.relation | Gordon Gilmore. Practical gamma-ray spectroscopy. John Wiley & Sons, 2011. | |
dc.relation | Michael E Kitto, Pravin P Parekh, Miguel A Torres, and Dominik Schneider. Radionuclide
and chemical concentrations in mineral waters at saratoga springs, new york.
Journal of environmental radioactivity, 80(3):327–339, 2005. | |
dc.relation | Aydan Altikulac, S Turhan, and Hasan Gumucs. The natural and artificial radionuclides
in drinking water samples and consequent population doses. Journal of radiation
research and applied sciences, 8(4):578–582, 2015. | |
dc.relation | P Andrew Karam. The high background radiation area in ramsar iran: Geology, norm,
biology, lnt, and possible regulatory fun. Technical report, University of Rochester,
Rochester, NY, USA (US), 2002. | |
dc.relation | K. Buchtela. Radiochemical methods — gamma-ray spectrometry. In Paul Worsfold,
Alan Townshend, and Colin Poole, editors, Encyclopedia of Analytical Science (Second
Edition), pages 72–79. Elsevier, Oxford, second edition, 2005. | |
dc.relation | Fernando Cristancho. Instrumentación nuclear-Notas de clase. Universidad Nacional
de Colombia. Bogotá, 2021. | |
dc.relation | J Gómez-Muñoz, ML Cortés, and F Cristancho. Gamma backscattering in soil layers
with different thickness and water content. In AIP Conference Proceedings, volume
1423, pages 418–421. AIP, 2012. | |
dc.relation | Nouredine Zettili. Quantum mechanics: concepts and applications. American Association
of Physics Teachers, 2003. | |
dc.relation | Ernest Rutherford and Frederick Soddy. Radioactive change. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 5(29):576–591, 1903. | |
dc.relation | International Atomic Energy Agency. Guidelines for radioelement mapping using
gamma ray spectrometry data, 2003. | |
dc.relation | E Mingarro. The radioactive equilibrium and determination methods for ratio e Ra/U;
Desequilibrio Radiactivos-1. Método β−γ. Determinación de la razón eRa/U. Valoración
del contenido en U3O8. 1966. | |
dc.relation | Glenn F Knoll. Radiation detection and measurement. John Wiley & Sons, 2010. | |
dc.relation | National Institute of Standars and Technology NIST. Xcom nist.element compound
mixture selection, 2019. | |
dc.relation | International Standard, Determination of characteristic limits (decision threshold, detection
limit and limits of the confidence interval) for measurements of ionizing radiation.
Standard, International Organization for Standardization, Geneva, CH, 2010. | |
dc.relation | Gordon Gilmore. Practical gamma-ray spectroscopy. John Wiley & Sons, 2011. | |
dc.relation | Determination and interpretation of characteristic limits for radiactivity measurements.
Standard, International Organization for Standardization, Vienna, 2017. | |
dc.relation | Max S Matheson and Bernard Smaller. Paramagnetic species in gamma-irradiated ice.
The Journal of Chemical Physics, 23(3):521–528, 1955. | |
dc.relation | A Guidebook. Measurement of radionuclides in food and the environment.
Vienna: International Atomic Energy Agency. Retrieved from https://www. iaea.
org/publications/1398/measurement-of-radionuclides-in-food-and-the-environment,
1989. | |
dc.relation | Mohand Hamlat, S Djeffal, and Hocine Kadi. Assessment of radiation exposures from naturally
occurring radioactive materials in the oil and gas industry. Applied radiation and
isotopes : including data, instrumentation and methods for use in agriculture, industry
and medicine, 55:141–6, 08 2001. | |
dc.relation | S Shawky, H Amer, AA Nada, TM Abd El-Maksoud, and NM Ibrahiem. Characteristics
of norm in the oil industry from eastern and western deserts of egypt. Applied Radiation
and Isotopes, 55(1):135–139, 2001. | |
dc.relation | M. Palomo, A. Peñalver, C. Aguilar, and F. Borrull. Presence of naturally occurring
radioactive materials in sludge samples from several spanish water treatment plants.
Journal of Hazardous Materials, 181(1):716–721, 2010. | |
dc.relation | Augustine Faanu, James H Ephraim, and Emmanuel O Darko. Assessment of public
exposure to naturally occurring radioactive materials from mining and mineral processing
activities of tarkwa goldmine in ghana. Environmental monitoring and assessment,
180(1):15–29, 2011. | |
dc.relation | Taavi Vaasma, Madis Kiisk, Maria Leier, Siiri Suursoo, Alar Jantsikene, and Kaisa
Putk. Norm-related industrial activities in estonia–establishing national norm inventory.
Journal of Sustainable Mining, 18(2):86–93, 2019. | |
dc.relation | Safia Hamidalddin et al. Measurement of natural radiation, calculation of radiation
doses of agricultural environmental samples in the western region-kingdom of saudi
arabia. Journal of Radiation Research and Applied Sciences, 15(1):69–74, 2022. | |
dc.relation | T Gäfvert, I Færevik, and AL Rudjord. Assessment of the discharge of norm to the
north sea from produced water by the norwegian oil and gas industry. Radioactivity in
the Environment, 8:193–205, 2006. | |
dc.relation | Water quality — Sampling — Part 11: Guidance on sampling of groundwaters. Standard,
International Organization for Standardization, Geneva, CH, 2003. | |
dc.relation | Water quality — Sampling — Part 3: Guidance on the preservation and handling of
water samples. Standard, International Organization for Standardization, Geneva, CH,
2003. | |
dc.relation | M. Cortes. Energy and time characterization of the response of the soil to γ-rays. Tesis
de maestría, Universidad Nacional de Colombia, 2010. | |
dc.relation | Water quality—Determination of the activity concentration of radionuclides—Method
by high resolution gamma-ray spectrometry. Standard, International Organization for
Standardization, Geneva, CH, 2017. | |
dc.relation | Ochoa P and Cristancho F. Corrección por eficiencia y optimización de la posición de
muestras para medir concentraciones de NORM usando un detector de HPGe. Trabajo
de grado, Departamento de Física - Universidad Nacional de Colombia, Bogotá, 2017. | |
dc.relation | H Friedmann, C Nuccetelli, B Michalik, M Anagnostakis, G Xhixha, K Kovler,
G de With, C Gascó,WS chroeyers, R Trevisi, et al. Measurement of norm. In Naturally
Occurring Radioactive Materials in Construction, pages 61–133. Elsevier, 2017. | |
dc.relation | AR Awudu, EO Darko, C Schandorf, EK Hayford, MK Abekoe, and PK Ofori-Danson.
Determination of activity concentration levels of 238u, 232th, and 40k in drinking water
in a gold mine in ghana. Health physics, 99(2):S149–S153, 2010. | |
dc.relation | J Vennart. The 1990 recommendations of the international commission on radiological
protection. Journal of Radiological Protection, 11(3):199, 1991. | |
dc.relation | Volume I Unscear, United Nations Scientific Committee on the Effects of Atomic Radiation,
et al. Report to the general assembly. Anex B: Exposures from Natural Radiation
Sources, New York, 2000. | |
dc.relation | World Health Organization et al. Guidelines for drinking-water quality 4th ed. geneva,
switzerland: World health organization; 2011, 2016. | |
dc.relation | United Nations Scientific Committee on the Effects of Atomic Radiation et al. Sources
and effects of ionizing radiation, unscear 2008. Report to the General Assembly with
Scientific Annexes, 1, 2008. | |
dc.relation | UK Pandey and P Krishnamurthy. Uranium and thorium abundances in some graphitebearing
precambrian rocks of india and implications. Current Science (Bangalore),
68(8):826–828, 1995. | |
dc.relation | C Manikyamba, Nuru Said, M Santosh, Abhishek Saha, Sohini Ganguly, and KSV
Subramanyam. U enrichment and th/u fractionation in archean boninites: Implications
for paleo-ocean oxygenation and u cycling at juvenile subduction zones. Journal of
Asian Earth Sciences, 157:187–197, 2018. | |
dc.relation | Claude Degueldre and Malcolm J Joyce. Evidence and uncertainty for uranium and
thorium abundance: A review. Progress in Nuclear Energy, 124:103299, 2020. | |
dc.relation | Y Kopylova, N Guseva, A Shestakova, A Khvaschevskaya, and K Arakchaa. Uranium
and thorium behavior in groundwater of the natural spa area “choygan mineral water”(
east tuva). In IOP conference series: Earth and environmental science, volume 27,
page 012034. IOP Publishing, 2015. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Análisis de concentración de los NORM en muestras de agua del Valle del Magdalena Medio | |
dc.type | Trabajo de grado - Maestría | |