dc.contributorCristancho Mejía, Fernando
dc.contributorRomero Ordóñez, Fernando Elí
dc.contributorGrupo de Física Nuclear de la Universidad Nacional
dc.creatorCipagauta Mora, Jennifer Brigitte
dc.date.accessioned2022-06-03T14:13:36Z
dc.date.available2022-06-03T14:13:36Z
dc.date.created2022-06-03T14:13:36Z
dc.date.issued2022-06-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81499
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractA los isótopos radiactivos $^{232}$Th, $^{238}$U y $^{40}$K se les conoce por sus siglas en inglés como NORM (Normally Occurring Radioactive Materials). Se tomaron 25 muestras de agua en la zona de estudio, el Valle del Magdalena Medio, de donde se determinaron las concentraciones de estos radionúcleos usando un sistema de espectroscopía gamma de alta resolución. Determinando el umbral de decisión y límite de detección se encontró que 7 muestras tienen presencia de $^{238}$U, 2 muestras contienen $^{40}$K pero estos niveles de uranio y potasio están por debajo del límite de detección. Adicionalmente, se reporta que ninguna de las muestras tiene concentración de actividad de torio superior al límite de decisión. (Texto tomado de la fuente)
dc.description.abstractThe radioactive isotopes $^{232}$Th, $^{238}$U y $^{40}$K are known as NORM (Normally Occurring Radioactive Materials). Taking a series of water samples in the study zone, the Middle Magdalena Valley, the concentration of these radionuclides is determined using a high-resolution gamma spectroscopy system. Determining the decision threshold and detection limit, it was found that 7 samples had the presence of $^{238}$U, 2 samples contained $^{40}$K but these uranium and potassium levels are below the detection limit. Additionally, it is reported that none of the samples has a thorium activity concentration above the decision limit.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationInternational Atomic Energy Agency. Preparation and certification of IAEA gamma-ray spectrometry reference materials RGU-1, RGTh-U and RGK-1, 1987.
dc.relationSreenath Gupta. Natural Gas: Extraction to End Use. BoD--Books on Demand, 2012.
dc.relationInternational Atomic Energy Agency. Extent of environmental contamination by naturally occurring radioactive material (norm) and technological options for mitigation. Technical report, International Atomic Energy Agency, 2003.
dc.relationK. P. Smith. An overview of naturally occurring radioactive materials (norm) in the petroleum industry. Technical report, Argonne National Lab., IL (United States)., 1992.
dc.relationM Arenas et al. Proyecto MEGIA: Estudio de la Demanda del Agua en el Sector Norte del Valle Medio del Magdalena. Producto No. 6. Technical report, Universidad Nacional de Colombia, 2020.
dc.relationWilliam R Leo. Techniques for nuclear and particle physics experiments: a how-to approach. Springer Science & Business Media, 2012.
dc.relationGordon Gilmore. Practical gamma-ray spectroscopy. John Wiley & Sons, 2011.
dc.relationMichael E Kitto, Pravin P Parekh, Miguel A Torres, and Dominik Schneider. Radionuclide and chemical concentrations in mineral waters at saratoga springs, new york. Journal of environmental radioactivity, 80(3):327–339, 2005.
dc.relationAydan Altikulac, S Turhan, and Hasan Gumucs. The natural and artificial radionuclides in drinking water samples and consequent population doses. Journal of radiation research and applied sciences, 8(4):578–582, 2015.
dc.relationP Andrew Karam. The high background radiation area in ramsar iran: Geology, norm, biology, lnt, and possible regulatory fun. Technical report, University of Rochester, Rochester, NY, USA (US), 2002.
dc.relationK. Buchtela. Radiochemical methods — gamma-ray spectrometry. In Paul Worsfold, Alan Townshend, and Colin Poole, editors, Encyclopedia of Analytical Science (Second Edition), pages 72–79. Elsevier, Oxford, second edition, 2005.
dc.relationFernando Cristancho. Instrumentación nuclear-Notas de clase. Universidad Nacional de Colombia. Bogotá, 2021.
dc.relationJ Gómez-Muñoz, ML Cortés, and F Cristancho. Gamma backscattering in soil layers with different thickness and water content. In AIP Conference Proceedings, volume 1423, pages 418–421. AIP, 2012.
dc.relationNouredine Zettili. Quantum mechanics: concepts and applications. American Association of Physics Teachers, 2003.
dc.relationErnest Rutherford and Frederick Soddy. Radioactive change. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5(29):576–591, 1903.
dc.relationInternational Atomic Energy Agency. Guidelines for radioelement mapping using gamma ray spectrometry data, 2003.
dc.relationE Mingarro. The radioactive equilibrium and determination methods for ratio e Ra/U; Desequilibrio Radiactivos-1. Método β−γ. Determinación de la razón eRa/U. Valoración del contenido en U3O8. 1966.
dc.relationGlenn F Knoll. Radiation detection and measurement. John Wiley & Sons, 2010.
dc.relationNational Institute of Standars and Technology NIST. Xcom nist.element compound mixture selection, 2019.
dc.relationInternational Standard, Determination of characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation. Standard, International Organization for Standardization, Geneva, CH, 2010.
dc.relationGordon Gilmore. Practical gamma-ray spectroscopy. John Wiley & Sons, 2011.
dc.relationDetermination and interpretation of characteristic limits for radiactivity measurements. Standard, International Organization for Standardization, Vienna, 2017.
dc.relationMax S Matheson and Bernard Smaller. Paramagnetic species in gamma-irradiated ice. The Journal of Chemical Physics, 23(3):521–528, 1955.
dc.relationA Guidebook. Measurement of radionuclides in food and the environment. Vienna: International Atomic Energy Agency. Retrieved from https://www. iaea. org/publications/1398/measurement-of-radionuclides-in-food-and-the-environment, 1989.
dc.relationMohand Hamlat, S Djeffal, and Hocine Kadi. Assessment of radiation exposures from naturally occurring radioactive materials in the oil and gas industry. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 55:141–6, 08 2001.
dc.relationS Shawky, H Amer, AA Nada, TM Abd El-Maksoud, and NM Ibrahiem. Characteristics of norm in the oil industry from eastern and western deserts of egypt. Applied Radiation and Isotopes, 55(1):135–139, 2001.
dc.relationM. Palomo, A. Peñalver, C. Aguilar, and F. Borrull. Presence of naturally occurring radioactive materials in sludge samples from several spanish water treatment plants. Journal of Hazardous Materials, 181(1):716–721, 2010.
dc.relationAugustine Faanu, James H Ephraim, and Emmanuel O Darko. Assessment of public exposure to naturally occurring radioactive materials from mining and mineral processing activities of tarkwa goldmine in ghana. Environmental monitoring and assessment, 180(1):15–29, 2011.
dc.relationTaavi Vaasma, Madis Kiisk, Maria Leier, Siiri Suursoo, Alar Jantsikene, and Kaisa Putk. Norm-related industrial activities in estonia–establishing national norm inventory. Journal of Sustainable Mining, 18(2):86–93, 2019.
dc.relationSafia Hamidalddin et al. Measurement of natural radiation, calculation of radiation doses of agricultural environmental samples in the western region-kingdom of saudi arabia. Journal of Radiation Research and Applied Sciences, 15(1):69–74, 2022.
dc.relationT Gäfvert, I Færevik, and AL Rudjord. Assessment of the discharge of norm to the north sea from produced water by the norwegian oil and gas industry. Radioactivity in the Environment, 8:193–205, 2006.
dc.relationWater quality — Sampling — Part 11: Guidance on sampling of groundwaters. Standard, International Organization for Standardization, Geneva, CH, 2003.
dc.relationWater quality — Sampling — Part 3: Guidance on the preservation and handling of water samples. Standard, International Organization for Standardization, Geneva, CH, 2003.
dc.relationM. Cortes. Energy and time characterization of the response of the soil to γ-rays. Tesis de maestría, Universidad Nacional de Colombia, 2010.
dc.relationWater quality—Determination of the activity concentration of radionuclides—Method by high resolution gamma-ray spectrometry. Standard, International Organization for Standardization, Geneva, CH, 2017.
dc.relationOchoa P and Cristancho F. Corrección por eficiencia y optimización de la posición de muestras para medir concentraciones de NORM usando un detector de HPGe. Trabajo de grado, Departamento de Física - Universidad Nacional de Colombia, Bogotá, 2017.
dc.relationH Friedmann, C Nuccetelli, B Michalik, M Anagnostakis, G Xhixha, K Kovler, G de With, C Gascó,WS chroeyers, R Trevisi, et al. Measurement of norm. In Naturally Occurring Radioactive Materials in Construction, pages 61–133. Elsevier, 2017.
dc.relationAR Awudu, EO Darko, C Schandorf, EK Hayford, MK Abekoe, and PK Ofori-Danson. Determination of activity concentration levels of 238u, 232th, and 40k in drinking water in a gold mine in ghana. Health physics, 99(2):S149–S153, 2010.
dc.relationJ Vennart. The 1990 recommendations of the international commission on radiological protection. Journal of Radiological Protection, 11(3):199, 1991.
dc.relationVolume I Unscear, United Nations Scientific Committee on the Effects of Atomic Radiation, et al. Report to the general assembly. Anex B: Exposures from Natural Radiation Sources, New York, 2000.
dc.relationWorld Health Organization et al. Guidelines for drinking-water quality 4th ed. geneva, switzerland: World health organization; 2011, 2016.
dc.relationUnited Nations Scientific Committee on the Effects of Atomic Radiation et al. Sources and effects of ionizing radiation, unscear 2008. Report to the General Assembly with Scientific Annexes, 1, 2008.
dc.relationUK Pandey and P Krishnamurthy. Uranium and thorium abundances in some graphitebearing precambrian rocks of india and implications. Current Science (Bangalore), 68(8):826–828, 1995.
dc.relationC Manikyamba, Nuru Said, M Santosh, Abhishek Saha, Sohini Ganguly, and KSV Subramanyam. U enrichment and th/u fractionation in archean boninites: Implications for paleo-ocean oxygenation and u cycling at juvenile subduction zones. Journal of Asian Earth Sciences, 157:187–197, 2018.
dc.relationClaude Degueldre and Malcolm J Joyce. Evidence and uncertainty for uranium and thorium abundance: A review. Progress in Nuclear Energy, 124:103299, 2020.
dc.relationY Kopylova, N Guseva, A Shestakova, A Khvaschevskaya, and K Arakchaa. Uranium and thorium behavior in groundwater of the natural spa area “choygan mineral water”( east tuva). In IOP conference series: Earth and environmental science, volume 27, page 012034. IOP Publishing, 2015.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAnálisis de concentración de los NORM en muestras de agua del Valle del Magdalena Medio
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución