dc.contributor | Ramírez Osorio, Jorge Mario | |
dc.contributor | Universidad Nacional de Colombia | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | Computación Científica | |
dc.creator | Villa Cárdenas, Delsy Yurani | |
dc.date.accessioned | 2020-05-26T20:32:27Z | |
dc.date.available | 2020-05-26T20:32:27Z | |
dc.date.created | 2020-05-26T20:32:27Z | |
dc.date.issued | 2019-08-16 | |
dc.identifier | Y. Villa. Ecuaciones de Langevin en Coordenadas Polares. 2019 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77554 | |
dc.description.abstract | In the first part of this work we use Levy's characterization of Brownian motion and a Time-Change theorem for Martingales to deduce the stochastic differential equations that describe the radial and angular processes of a two-dimensional Ornstein-Uhlenbeck process. In the second part we demonstrate the existence and uniqueness of the radial Ornstein-Uhlenbeck process and analyze its usefulness for modeling. Finally, we show that the distribution of the radial Ornstein-Uhlenbeck process converges to an invariant distribution with an specified mean and variance.. | |
dc.description.abstract | En la primera parte de este trabajo utilizamos la caracterización de Levy del movimiento Browniano y un teorema de cambio temporal para Martingales para deducir las ecuaciones diferenciales estocásticas que describen los procesos radial y angular de un proceso bidimensional de Ornstein-Uhlenbeck. En la segunda parte demostramos la existencia y unicidad del proceso radial de Ornstein-Uhlenbeck y analizamos la viabilidad de usar esta ecuación en la modelación. Finalmente, se muestra que la distribución del proceso radial de Ornstein-Uhlenbeck converge a una distribución invariante con una media y varianza específicada | |
dc.language | spa | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Matemática Aplicada | |
dc.publisher | Escuela de matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | R.N. Bhattacharya and E.C. Waymire. Stochastic Processes with Applications. 2009 | |
dc.relation | X. Chen. The Limit Law of the Iterated Logarithm. Journal of Theoretical Probability, 28(2): 721-725, 2015. | |
dc.relation | A. S. Cherny. On the strong and weak solutions of stochastic differential equations governing
Bessel processes. Stochastics and Stochastics Reports, 3(70): 213-219, 2000 | |
dc.relation | A.B. Dieker and Xuefeng Gao. Positive recurrence of piecewise Ornstein-Uhlenbeck processes and common quadratic Lyapunov functions. Journal of Theoretical Probability, 23(4):1291-1317, 2013 | |
dc.relation | O. Kallenberg. Foundations of Modern Probability. 1997 | |
dc.relation | I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus. 1991 | |
dc.relation | F. Klebaner. Introduction to Stochastic Calculus with Applications. 2005. | |
dc.relation | H. Kunita and S. Watanabe. On square integrable martingales. Nagoya Mathematical Journal, 30(30):209-246, 1967. | |
dc.relation | S. Lang. Complex Analysis. 1999 | |
dc.relation | B. Oksendal. Stochastic Differential Equations. An introduction with applications. Springer-Verlag Berlin, 5 edition, 1985. | |
dc.relation | A. Perna, B. Granovskiy, S. Garnier, S. C. Nicolis, M. Labédan, G. Theraulaz, V. Fourcassié, and D.J. Sumpter. Individual rules for trail pattern formation in Argentine ants (linepithema humile). PLoS Computational Biology, 8(7), 2012. | |
dc.relation | D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, volume 293. 1999. | |
dc.relation | P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, and L. Schimansky-Geier. Active Brownian Particles. From Individual to Collective Stochastic Dynamics. 2012. | |
dc.relation | M. Schienbein and H. Gruler. Langevin equation, Fokker-Planck equation and cell migration. Bulletin of Mathematical Biology, 55(3):585-608, 1993. | |
dc.relation | F. Schweitzer. Brownian Agents and Active Particles. Springer, 2003. | |
dc.relation | D.W. Strock and S.R.S. Varadhan. Multidimensional Diffusion Processes. 1979. | |
dc.relation | S. Vakeroudis. On the windings of complex-valued Ornstein{Uhlenbeck processes driven by a Brownian motion and by a stable process. Stochastics, 87(5):766-793, 2015. | |
dc.relation | J. B. Walsh. Knowing the Odds An introduction , to Probability. 2012. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Ecuaciones de langevin en coordenadas polares | |
dc.type | Otro | |