dc.contributor | Salazar-Uribe, Juan Carlos | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.contributor | METODOS EN BIOESTADISTICA | |
dc.creator | Orozco-Quiceno, Henry Humberto | |
dc.date.accessioned | 2020-04-28T21:34:59Z | |
dc.date.available | 2020-04-28T21:34:59Z | |
dc.date.created | 2020-04-28T21:34:59Z | |
dc.date.issued | 2018-08-02 | |
dc.identifier | Orozco, H. (2020) Comparación de diferentes metodologías para la estimación por intervalos para las tasas estandarizadas | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77458 | |
dc.description.abstract | Standardized rates are used to compare an event in a study population with a standard population. They allow to control the confounding effects of other variables and to size the event according to the same standard. In this paper several methodologies are evaluated for the estimation, through confidence intervals, of the standardized rates. Some of them based on the normal distribution, Poisson and gamma. By using a simulation study, with three different values for the rates, the performance of the moments, gamma, bootstrap and Bayesian confidence intervals are evaluated. The performance of each interval is measure through a index that takes into account both the coverage level and the amplitude of the interval and it also permits to evaluate the quality of each of the considered intervals. The confidence intervals with better performance, according to the proposed index, are identified; among these are the gamma, moments and bootstrap methods. | |
dc.description.abstract | Las tasas estandarizadas se utilizan para comparar un evento en una población de estudio con una población estándar . Permiten controlar los efectos confusores de otras variables y dimensionar el evento de acuerdo a un mismo estándar. En este trabajo se evalúan varias metodologías para la estimación de las tasas estandarizadas a través de intervalos de confianza, algunas basadas en la distribución normal, Poisson y gamma. Con un estudio de simulación se evalúan los desempeños de los intervalos de confianza de las metodologías boostrap, momentos, gamma y bayesiana, en tres escenarios de tamaños de tasas diferentes,comparándolas a través es de un índice que permite considerar tanto el nivel de cobertura como la amplitud del intervalo y evaluar la calidad de cada uno de los intervalos evaluados conjuntamente. Se identifican los métodos de intervalos de confianza con mejor desempeño de acuerdo al índice propuesto, entre estos se destacan los métodos gamma, de momentos y bootstrap. | |
dc.language | spa | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Estadística | |
dc.publisher | Escuela de estadística | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Ahmad, O. B., Boschi-pinto, C., and Lopez, A. D. (2001). Age standardization of rates: a new WHO standard. (31):1–14 | |
dc.relation | Diciccio, T. (1991). More accurate confidence intervals in exponential families. Technical Report 368, Stanford University, Stanford, California. | |
dc.relation | Diciccio T, E. B. (1995). Bootstrap confidence intervals. Technical Report
473, Stanford University, Stanford, California. | |
dc.relation | DiCiccio T, E. B. (1996). Bootstrap confidence intervals. Statistical
Science, 11:189–212. | |
dc.relation | Dobson A, Kuulasmaa K, E. E. S. J. (1991). Confidence intervals for
weighted sums of poisson parameters. Statistics In Medicine, 10:457–462. | |
dc.relation | Eduardo, C., Cardona, M., and Garc´ıa-perdomo, H. A. (2017). Incidence of penile cancer worldwide : systematic review and meta-analysis. pages 1–10 | |
dc.relation | Efron, B. (1993). An Introduction to the Bootstrap. Chapman y Hall/CRC. | |
dc.relation | Fay, M. P. (1999). Approximate confidence intervals for rate ratios from directly
standardized rates with sparse data. Communications in Statistics - Theory and Methods,
28(9):2141–2160. | |
dc.relation | Fay, M. P. and Kim, S. (2017). Confidence intervals for directly standardized rates using mid-p gamma intervals. Biometrical Journal, 59(2). | |
dc.relation | Fay M, F. E. (1997). Confidence intervals for directly standardized rates: A
method based on the gamma distribution. Statistics In Medicine, 16:791–801. | |
dc.relation | Hon Keung T, Filardoa g, Z. g. (2008). Confidence interval estimating
procedures for standardized incidence rate. Computational Statistics and Data Analysis,
52(7):3501–3516 | |
dc.relation | Johnson N, K. A. K. S. (2005). Univariate Discrete Distributions. John
Wiley y Sons, New York. | |
dc.relation | Keung H, Filardo, Z. G. (2008). Confidence interval estimating procedures
for standardized incidence rates. Computational Statistics and Data Analysis, 52:3501–
3516. | |
dc.relation | Krishnamoorthy, K., Peng, J., and Zhang, D. (2016). Modified
large sample confidence intervals for poisson distributions: Ratio, weighted average, and
product of means. Communications in Statistics - Theory and Methods, 45(1):83–97. | |
dc.relation | Nelson, M. (2017). Package dsrTest. (31):1–14 | |
dc.relation | Ross, T. (2003). Acurate confidence intervals for binomial proportion and poisson rate estimation. Computers an Biology and Medicine, 10:1080. | |
dc.relation | Schoenbach, V. J. (1999). Estandarizacion de tasas y razones | |
dc.relation | Swift, M. (1995). Simple confidence intervals for standardized rates based on
the approximate bootstrap method. Statistics in Medicine, 14:875–1888 | |
dc.relation | Swift, M. (2010). A simulation study comparing methods for calculating confidence intervals for directly standardized rates. Computational Statistics and Data Analysis, 54:1103–1108 | |
dc.relation | Tiwari R, Clegg L, Z. Z. (2006). Efficient interval estimation for ageadjusted cancer rates. Statistical Methods in Medical Research, 15:547–567. | |
dc.relation | William Meeker, Gerald Hahn, L. E. (2017). Statistical Intervals: A
Guide for Practitioners and Researchers. Wiley. | |
dc.relation | Woodward, M. (2005). Epidemiology study design and data analisis. Florida: Chapman y Hall/crcl. | |
dc.relation | DANE (2017a). Defunciones no fetales 2010. | |
dc.relation | DANE (2017b). Proyecciones de Poblacion | |
dc.relation | Correa, J. (2007). Estimación por intervalo del parámetro de la distribución de poisson con una sola observación. Revista Colombiana de Estadística, 30(1):69–75 | |
dc.relation | Correa J, S. E. (2003). Intervalos de confianza para la comparación de dos proporciones. Revista Colombiana de Estadística, 26(1):61–75. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Comparación de diferentes metodologías para la estimación por intervalos para las tasas estandarizadas | |
dc.type | Otro | |