dc.creatorMartínez Núñez, Gary
dc.date.accessioned2021-12-14T14:23:10Z
dc.date.accessioned2022-01-27T21:21:19Z
dc.date.available2021-12-14T14:23:10Z
dc.date.available2022-01-27T21:21:19Z
dc.date.created2021-12-14T14:23:10Z
dc.date.issued2021
dc.identifierGeometriae Dedicata Volume 215 Issue 1 Page 297-314 2021
dc.identifier10.1007/s10711-021-00651-w
dc.identifierhttps://repositorio.uchile.cl/handle/2250/183204
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3315573
dc.description.abstractLet A be an abelian variety and G a finite group of automorphisms of A fixing the origin such that A/G is smooth. The quotient A/G can be seen as a fibration over an abelian variety whose fibers are isomorphic to a product of projective spaces. We classify how the fibers are glued in the case when the fibers are isomorphic to a projective space and we prove that, in general, the quotient A/G is a fibered product of such fibrations.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States
dc.sourceGeometriae Dedicata
dc.subjectAbelian varieties
dc.subjectFibrations
dc.subjectGroups action
dc.titleFibrations associated to smooth quotients of abelian varieties
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución