dc.creatorPeralta Márquez, Billy
dc.creatorCaro, Alberto
dc.creatorSoto, Alvaro
dc.date2016
dc.date2021-04-30T16:34:18Z
dc.date2021-04-30T16:34:18Z
dc.date.accessioned2021-06-14T21:59:54Z
dc.date.available2021-06-14T21:59:54Z
dc.identifierPATTERN RECOGNITION LETTERS,Vol.80,52-57,2016
dc.identifierhttp://repositoriodigital.uct.cl/handle/10925/3027
dc.identifier10.1016/j.patrec.2016.05.019
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3298359
dc.descriptionSupervised clustering is an emerging area of machine learning, where the goal is to find class-uniform clusters. However, typical state-of-the-art algorithms use a fixed number of clusters. In this work, we propose a variation of a non-parametric Bayesian modeling for supervised clustering. Our approach consists of modeling the clusters as a mixture of Gaussians with the constraint of encouraging clusters of points with the same label. In order to estimate the number of clusters, we assume a-priori a countably infinite number of clusters using a variation of Dirichlet Process model over the prior distribution. In our experiments, we show that our technique typically outperforms the results of other clustering techniques. (C) 2016 Elsevier B.V. All rights reserved.
dc.languageen
dc.publisherELSEVIER
dc.sourcePATTERN RECOGNITION LETTERS
dc.subjectDirichlet Process
dc.subjectSupervised clustering
dc.subjectClustering
dc.titleA proposal for supervised clustering with Dirichlet Process using labels
dc.typeArticle


Este ítem pertenece a la siguiente institución