dc.contributorParra Vargas, Carlos Arturo (Director de tesis)
dc.contributorSarmiento Santos, Armando (Codirector tesis)
dc.creatorSupelano García, Iván
dc.date.accessioned2019-03-06T22:42:36Z
dc.date.available2019-03-06T22:42:36Z
dc.date.created2019-03-06T22:42:36Z
dc.date.issued2015
dc.identifierSupelano García, I. (2015). Estudio experimental de las propiedades estructurales y transición magnética del sistema CaMn1-xMoxO3 (0,07<x<0,34). (Tesis de maestría). Universidad Pedagógica y Tecnológica de Colombia, Tunja. http://repositorio.uptc.edu.co/handle/001/2478
dc.identifierhttp://repositorio.uptc.edu.co/handle/001/2478
dc.description.abstractWe show the results about production of CaMn1-xMoxO3 (0.07<x<0.34) system, synthesized by the solid state reaction method. The samples were structurally characterized by XRD technique, at room temperature, and the Rietveld refinement technique (Fullprof software). The study allowed to prove that stoichiometries with x <0.13 are pure phase and for higher stoichiometries a second phase appears. The magnetic response was analyzed by magnetization measurements as a function of temperature and applied field, showing antiferromagnetic behavior at low temperatures. The samples with x = 0.08, 0.10 and 0.12, were produced with three different conditions in the sintering step. The samples produced at a heating rate of 2.5 ° C/min shows a similar magnetic behavior in comparison with samples produced at a rate of 1.8 ° C/min, this group of samples was structurally and magnetically characterized by neutron diffraction technique (performed in the Institut Max von Laue - Paul Langevin ILL) and Rietveld refinement; observing a structural transition from an orthorhombic group (Pnma) to monoclinic (P21/m), and magnetic transition was associated with inflections observed in the magnetization curves. These measures allowed tracking the evolution of the structural parameters as a function of temperature.
dc.description.abstractEn el presente trabajo se compila los resultados obtenidos de la producción del sistema CaMn1-xMoxO3 (0,07<x<0,34), sintetizado por el método de reacción en estado sólido. Las muestras fueron caracterizadas estructuralmente por medio de la técnica de DRX, a temperatura ambiente, y la técnica de refinamiento Rietveld (software Fullprof). El estudio permitió demostrar que para estequiometrias con x<0.13 la fase es pura y, para estequiometrias superiores aparece una segunda fase. La respuesta magnética fue analizada por medidas de magnetización en función de la temperatura y del campo aplicado, evidenciando un comportamiento antiferromagnético a bajas temperaturas. Las muestras con x=0,08, 0,10 y 0,12, fueron producidas con tres condiciones diferentes en la etapa de sinterización. La muestras producidas a una rata de calentamiento de 2,5 °C/min muestran un comportamiento magnético similar al de las muestras producidas a una tasa de 1,8 °C/min, a este grupo de muestras se le realizó una caracterización estructural y magnética por medio de difracción de neutrones (realizadas en el Institut Max von Laue – Paul Langevin ILL) y refinamiento Rietveld; observando una transición estructural de un grupo ortorrómbico (Pnma) a uno monoclínico (P21/m) y, una transición magnética asociada con las inflexiones presentes en las curvas de magnetización. Éstas medidas permitieron realizar un seguimiento en la evolución de los parámetros estructurales en función de la temperatura.
dc.languagespa
dc.publisherUniversidad Pedagógica y Tecnológica de Colombia
dc.publisherFacultad de Ciencias. Maestría en Ciencias - Física
dc.relationJanaina Viana Barros. Producción, caracterización estructural, morfológica y luminiscente de cerámicas tipo perovskita. Programa de posgrado en Ciencia de Materiales, Universidad Federal de Pernambuco. 2007
dc.relationSandeep Pathak. Manganites: phenonmenology, present understanding and future prospects. Materials Research Center. Indian Institute of Science. Bangalore, India. 560 012.
dc.relationM. Miclau, D. Grebille, C. Martin. Crystal growth of CaMn1-xMoxO3 perovskites by the floating-zone technique (0<x<0.15). Journal of Crystal Growth. 285 (2005) 661-669.
dc.relationA. Maignan, C. Martin, C. Autret, M. Hervieu, B. Raveau, J. Hejtmanek. Structural–magnetic phase diagram of Mo-substituted CaMnO3: consequences for thermoelectric power properties. Journal of Materials Chemistry. (2002) doi:10.1039/B200495J.
dc.relationG. H. Jonker, J. H. van Santen. Ferromagnetic compounds of manganese with perovskite structure. Physica. 16 (1950) 337-349.
dc.relationJ. M. Dai et al. Photoinduced resistivity change in layered manganite La2−2xCa1+2xMn2O7 (x=0.3). Materials Science and Engineering. B76 (2000) 35–37.
dc.relationTaran et al. CE-type antiferromagnetic ordering and martensitic transition in Pr-substituted La0.65Ca0.35MnO3 from magnetic and neutron diffraction studies. Journal of. Physics: Condensed Matter. 19 (2007) 216217.
dc.relationS. M. DunaevskiÏ. Influence of the Degenerate d Level and of the Jahn–Teller Effect on the Manganite Electronic Structure Calculated in the Tight-Binding Approximation. Physics of the Solid State. 43. (2001) 2257–2261.
dc.relationV. A. Khomchenko et al. Crystalline and Magnetic Structures of La1–xBixMnO3+d Manganites. Journal of Experimental and Theoretical Physics. 103 (2006) 54–59.
dc.relationJ. J. Neumeier, J. L. Cohn. Possible signatures of magnetic phase segregation in electron-doped antiferromagnetic CaMnO3. Physical Review B. 61 (2000) 319-322.
dc.relationS. Parashar, E. E. Ebensol, A. R. Raju, C. N. R. Rao. Insulator–metal transitions induced by electric and magnetic fields, in thin films of charge-ordered Pr1-xCaxMnO3. Solid State Communications. 114 (2000) 295–299.
dc.relationS. M. DunaevskiÏ, V. V. Deriglazov. Magnetic and Orbital Structures of Manganites in the Electron Doping Region. Physics of the Solid State. 45 (2003) 714–717.
dc.relationP. R. Sagdeoa, S. Anwara, N. P. Lalla, S. I. Patil. The contribution of grain boundary and defects to the resistivity in the ferromagnetic state of polycrystalline manganites. Journal of Magnetism and Magnetic Materials. 306 (2006) 60–68.
dc.relationL. Bocher et al. High-temperature stability, structure and thermoelectric properties of CaMn1-xNbxO3 phases. Acta Materialia. 57 (2009) 5667–5680.
dc.relationX. Gaojie et al. High-temperature transport properties of Nb and Ta substituted CaMnO3 system. Solid State Ionics. 171 (2004) 147–151.
dc.relationS. Mizusaki, J. Sato, T. Taniguchi, Y. Nagata, S. H. Lai, M.D. Lan, T. Cozawa, Y. Noro, H. Samata. Ferromagnetism in CaMn1−xIrxO3. Journal of. Physics: Condensed Matter 20 (2008) 235242-235249
dc.relationB. Raveau, A. Maignan, C. Martin, M. Hervieu. Re and Ru induced CMR effect in CaMnO3: the prime role of valency. Materials Research Bulletin 35 (2000) 1579–1585
dc.relationC. Martina, A. Maignan, M. Hervieu, B. Raveau, J. Hejtmanek. Extension of ferromagnetism and metallicity to electron-rich manganites by Ru-doping: Generation of new CMR oxides Sm0.2Ca0.8Mn1−xRuxO3, European Physical Journal B. 16 (2000) 469-474
dc.relationM. Miclau, J. Hejtmanek, R. Retoux, K. Knizek, Z. Jirak, R. Fresard, A. Maignan, S. Hébert, M. Hervieu, C. Martin. Structural and Magnetic Transitions in CaMn1-xWxO3, Chemistry of Materials. 19 (2007) 4243-4251
dc.relationS. F. Dubinin et al. Ordering of Oxygen Vacancies in a CaMnO3-d Perovskite Single Crystal. Physics of the Solid State. 47 (2005) 1267–1272.
dc.relationS. F. Dubinin et al. Magnetic Structure of a CaMnO2.75 Crystal with Ordered Oxygen Vacancies. Physics of the Solid State. 48 (2006) 1526–1532.
dc.relationP. M. Woodward. Octahedral Tilting in Perovskites I. Geometrical Considerations. Acta Crystallographica B53 (1997) 32-43.
dc.relationCatalina Salazar Mejía. Análisis de las Propiedades Estructurales y Magnetoeléctricas de la Manganita Sr2TiMnO6. Grupo de Física de Nuevos Materiales Departamento de Física Universidad Nacional de Colombia. 2008.
dc.relationS. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnach, R. Ramesh, L. H. Chen. Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science. 264 (1994) 413-415
dc.relationNicola A. Spalding. Magnetic Materials. Fundamentals and applications. Second Edition. Cambridge. 2011.
dc.relationCharles Kittel. Introducción a la Física del Estado Sólido, Tercera Edición. Reverté S.A. 1998.
dc.relationK. H. J. Buschow F. R. de Boer. Physics of magnetism and magnetic materials. Kluwer Academic Publishers. 2004.
dc.relationSoshin Chikazumi. Physics of ferromagnetism. International Series of monographs on physics. Oxford Science Publications. Great Britain. 1997
dc.relationMike McElfresh. Fundamentals of magnetism and magnetic measurements. Featuring Quantum Design´s magnetic property measurement system. Quantum Design. 1994.
dc.relationJ. M. D. Coey. Magnetism and magnetic materials. Cambridge University Press. 2009
dc.relationDamien Gignoux, Michel Schlenker. Magnetism Fundamentals. Springer Science + Business media Inc. Estados Unidos. 2005.
dc.relationCarlos Arturo Parra Vargas. Fluctuaciones En Las Propiedades Magnéticas Y De Magnetotransporte De Superconductores De Alta Temperatura Crítica. Universidad Nacional de Colombia sede Bogotá. Facultad de Ciencias Departamento de Física Santafé de Bogotá D. C. 2010
dc.relationRichard J. D. Tilley. Crystals and Crystal Structures. John Wiley & Sons Ltd. Great Britain. 2006.
dc.relationP. C. Susana, C. B. Ronald. Método de Rietveld para el estudio de estructuras cristalinas. Revista de la Facultad de Ciencias de la UNI. (2005)
dc.relationJuan Rodríguez-Carvajal. An introduction to the program FullProf 2000. Laboratoire Léon Brillouin (CEA-CNRS) CEA/Saclay, 91191 Gif sur Yvette Cedex, FRANCE.
dc.relationVersaLab User´s Manual. Quantum Design. Estados Unidos. 2008.
dc.relationTheo Hahn. International tables for crystallography. Volume A Space-Group Symmetry, Edición 5, Publicado por The International Union Of Crystallography, Londres, 2002
dc.relationS.N. Achary, S.J. Patwe, M.D. Mathews, A.K. Tyagi. High temperature crystal chemistry and thermal expansion of synthetic powellite (CaMoO4): A high temperature X-ray diffraction (HT-XRD) study. Journal of Physics and Chemistry of Solids. 67 (2006) 774–781.
dc.relationH.-N. Im, M.-B. Choi, S.-Y. Jeon, S.-J. Song. Structure, thermal stability and electrical conductivity of CaMoO4+d. Ceramics International. 37 (2011) 49–53.
dc.relationJ Simony, J Banysy, J Hoentschy, G Volkely, R Bottchery, A Hofstaetterz, A Scharmann. Indications of a ferroelastic phase transition in CaMoO4 from pulsed electron paramagnetic resonance and dielectric studies. Journal of. Physics: Condensed Matter 8 (1996) L359–L362.
dc.relationG. Erdogan, D. Eugene, J. S. King. Crystal Structure Refinement of SrMo04, SrW04, CaMo04, and BaW04 by Neutron Diffraction. The journal of chemical physics. 55 (1971) 1093-1097.
dc.relationC. Ang, J. R. Jurado, Z. Yu, M. T. Colomer, J. R. Frade, J. L. Baptista. Variable-range-hopping conduction and dielectric relaxation in disordered Sr0.97(Ti1-xFex)O3-d. Physical Review B. 57 (1998) 858-861.
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsCopyright (c) 2015 Universidad Pedagógica y Tecnológica de Colombia
dc.titleEstudio experimental de las propiedades estructurales y transición magnética del sistema CaMn1-xMoxO3 (0,07<x<0,34)
dc.typeTrabajo de grado - Pregrado


Este ítem pertenece a la siguiente institución