dc.creatorDuarte-Mermoud, Manuel
dc.creatorGallegos, Javier
dc.creatorAguila Camacho, Norelys
dc.creatorCastro-Linares, Rafael
dc.date.accessioned2019-05-31T15:21:16Z
dc.date.available2019-05-31T15:21:16Z
dc.date.created2019-05-31T15:21:16Z
dc.date.issued2018
dc.identifierAlgorithms, Volumen 11, Issue 9, 2018
dc.identifier19994893
dc.identifier10.3390/a11090136
dc.identifierhttps://repositorio.uchile.cl/handle/2250/169556
dc.description.abstractAdaptive and non-adaptive minimal realization (MR) fractional order observers (FOO) for linear time-invariant systems (LTIS) of a possibly different derivation order (mixed order observers, MOO) are studied in this paper. Conditions on the convergence and robustness are provided using a general framework which allows observing systems defined with any type of fractional order derivative (FOD). A qualitative discussion is presented to show that the derivation orders of the observer structure and for the parameter adjustment are relevant degrees of freedom for performance optimization. A control problem is developed to illustrate the application of the proposed observers.
dc.languageen
dc.publisherMDPI AG
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceAlgorithms
dc.subjectFractional order adaptive observers
dc.subjectFractional order observers
dc.subjectFractional order systems
dc.subjectRobust fractional order observers
dc.titleMixed order fractional observers for minimal realizations of linear time-invariant systems
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución