dc.creator | Daniilidis, Aris | |
dc.creator | Deville, Robert | |
dc.creator | Durand-Cartagena, Estibalitz | |
dc.creator | Rifford, Ludovic | |
dc.date.accessioned | 2019-05-31T15:19:03Z | |
dc.date.available | 2019-05-31T15:19:03Z | |
dc.date.created | 2019-05-31T15:19:03Z | |
dc.date.issued | 2018 | |
dc.identifier | Journal of Mathematical Analysis and Applications, Volumen 457, Issue 2, 2018, Pages 1333-1352. | |
dc.identifier | 10960813 | |
dc.identifier | 0022247X | |
dc.identifier | 10.1016/j.jmaa.2017.04.011 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/169305 | |
dc.description.abstract | It is established that every self-contracted curve in a Riemannian manifold has finite length, provided its image is contained in a compact set. | |
dc.language | en | |
dc.publisher | Academic Press Inc. | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | Journal of Mathematical Analysis and Applications | |
dc.subject | Length | |
dc.subject | Rectifiable curve | |
dc.subject | Riemannian manifold | |
dc.subject | Secant | |
dc.subject | Self-contracted curve | |
dc.subject | Self-expanded curve | |
dc.title | Self-contracted curves in Riemannian manifolds | |
dc.type | Artículo de revista | |