dc.contributorVerri, Alessandra Aparecida
dc.contributorhttp://lattes.cnpq.br/8794549732815622
dc.contributorhttp://lattes.cnpq.br/7491471460040429
dc.creatorMamani, Carlos Ronal Mamani
dc.date.accessioned2018-05-08T14:25:23Z
dc.date.available2018-05-08T14:25:23Z
dc.date.created2018-05-08T14:25:23Z
dc.date.issued2018-04-06
dc.identifierMAMANI, Carlos Ronal Mamani. Espectro absolutamente contínuo do operador Laplaciano. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9903.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/9903
dc.description.abstractLet $\Omega$ be a periodic waveguide in $\mathbb R^3$, we denote by $-\Delta_\Omega^D$ and $-\Delta_\Omega^N$ the Dirichlet and Neumann Laplacian operators in $\Omega$, respectively. In this work we study the absolutely continuous spectrum of $-\Delta_\Omega^j$, $j \in \{D,N\}$, on the condition that the diameter of the cross section of $\Omega$ is thin enough. Furthermore, we investigate the existence and location of band gaps in the spectrum $\sigma(-\Delta_\Omega^j)$, $j \in \{D,N\}$. On the other hand, we also consider the case where $\Omega$ is a twisting waveguide (bounded or unbounded) and not necessarily periodic. In this situation, by considering the Neumann Laplacian operator $-\Delta_\Omega^N$ in $\Omega$, our goal is to find the effective operator when $\Omega$ is ``squeezed''. However, since in this process there are divergent eigenvalues, we consider $-\Delta_\Omega^N$ acting in specific subspaces of the initial Hilbert space. The strategy is interesting because we find different effective operators in each situation. In the case where $\Omega$ is periodically twisted and thin enough, we obtain information on the absolutely continuous spectrum of $-\Delta_\Omega^N$ (restricted to that subspaces) and existence and location of band gaps in its structure.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectTubos periódicos
dc.subjectLaplaciano de Dirichlet
dc.subjectLaplaciano de Neumann
dc.subjectEspectro absolutamente contínuo
dc.subjectLacunas espectrais
dc.subjectPeriodic waveguide
dc.subjectDirichlet Laplacian
dc.subjectNeumann Laplacian
dc.subjectAbsolutely continuos spectrum
dc.subjectBand gaps
dc.titleEspectro absolutamente contínuo do operador Laplaciano
dc.typeTesis


Este ítem pertenece a la siguiente institución