dc.contributor | Verri, Alessandra Aparecida | |
dc.contributor | http://lattes.cnpq.br/8794549732815622 | |
dc.contributor | http://lattes.cnpq.br/7491471460040429 | |
dc.creator | Mamani, Carlos Ronal Mamani | |
dc.date.accessioned | 2018-05-08T14:25:23Z | |
dc.date.available | 2018-05-08T14:25:23Z | |
dc.date.created | 2018-05-08T14:25:23Z | |
dc.date.issued | 2018-04-06 | |
dc.identifier | MAMANI, Carlos Ronal Mamani. Espectro absolutamente contínuo do operador Laplaciano. 2018. Tese (Doutorado em Matemática) – Universidade Federal de São Carlos, São Carlos, 2018. Disponível em: https://repositorio.ufscar.br/handle/ufscar/9903. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/9903 | |
dc.description.abstract | Let $\Omega$ be a periodic waveguide in $\mathbb R^3$, we denote by $-\Delta_\Omega^D$ and $-\Delta_\Omega^N$ the Dirichlet and Neumann Laplacian operators in $\Omega$, respectively. In this work we study the absolutely continuous spectrum of $-\Delta_\Omega^j$, $j \in \{D,N\}$, on the condition that the diameter of the cross section of $\Omega$ is thin enough. Furthermore, we investigate the existence and location of band gaps in the spectrum $\sigma(-\Delta_\Omega^j)$, $j \in \{D,N\}$. On the other hand, we also consider the case where $\Omega$ is a twisting waveguide (bounded or unbounded) and not necessarily periodic. In this situation, by considering the Neumann Laplacian operator $-\Delta_\Omega^N$ in $\Omega$, our goal is to find the effective operator when $\Omega$ is ``squeezed''. However, since in this process there are divergent eigenvalues, we consider $-\Delta_\Omega^N$ acting in specific subspaces of the initial Hilbert space. The strategy is interesting because we find different effective operators in each situation. In the case where $\Omega$ is periodically twisted and thin enough, we obtain information on the absolutely continuous spectrum of $-\Delta_\Omega^N$ (restricted to that subspaces) and existence and location of band gaps in its structure. | |
dc.language | por | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | UFSCar | |
dc.publisher | Programa de Pós-Graduação em Matemática - PPGM | |
dc.publisher | Câmpus São Carlos | |
dc.rights | Acesso aberto | |
dc.subject | Tubos periódicos | |
dc.subject | Laplaciano de Dirichlet | |
dc.subject | Laplaciano de Neumann | |
dc.subject | Espectro absolutamente contínuo | |
dc.subject | Lacunas espectrais | |
dc.subject | Periodic waveguide | |
dc.subject | Dirichlet Laplacian | |
dc.subject | Neumann Laplacian | |
dc.subject | Absolutely continuos spectrum | |
dc.subject | Band gaps | |
dc.title | Espectro absolutamente contínuo do operador Laplaciano | |
dc.type | Tesis | |