dc.creator | Daniilidis, Aris | |
dc.creator | Haddou, Mounir | |
dc.creator | Le Gruyer, Erwan | |
dc.creator | Ley, Olivier | |
dc.date.accessioned | 2019-01-13T02:37:06Z | |
dc.date.available | 2019-01-13T02:37:06Z | |
dc.date.created | 2019-01-13T02:37:06Z | |
dc.date.issued | 2018 | |
dc.identifier | Proceedings of the American Mathematical Society Volumen: 146 Número: 10 Páginas: 4487-4495 Oct 2018 | |
dc.identifier | 10.1090/proc/14012 | |
dc.identifier | http://repositorio.uchile.cl/handle/2250/159360 | |
dc.description.abstract | We give a simple alternative proof for the C-1,C-1-convex extension problem which has been introduced and studied by D. Azagra and C. Mudarra (2017). As an application, we obtain an easy constructive proof for the Glaeser-Whitney problem of C-1,C-1 extensions on a Hilbert space. In both cases we provide explicit formulae for the extensions. For the Glaeser-Whitney problem the obtained extension is almost minimal, that is, minimal up to a multiplicative factor in the sense of Le Gruyer (2009). | |
dc.language | en | |
dc.publisher | Amer Mathematical Soc | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | Proceedings of the American Mathematical Society | |
dc.subject | Whitney extension problem | |
dc.subject | Convex extension | |
dc.subject | Sup-inf convolution | |
dc.subject | Semiconvex function | |
dc.title | Explicit formulas for C1;1 Glaeser-Whitney extensions of 1-Taylor elds in Hilbert spaces | |
dc.type | Artículos de revistas | |