dc.creatorDaniilidis, Aris
dc.creatorHaddou, Mounir
dc.creatorLe Gruyer, Erwan
dc.creatorLey, Olivier
dc.date.accessioned2019-01-13T02:37:06Z
dc.date.available2019-01-13T02:37:06Z
dc.date.created2019-01-13T02:37:06Z
dc.date.issued2018
dc.identifierProceedings of the American Mathematical Society Volumen: 146 Número: 10 Páginas: 4487-4495 Oct 2018
dc.identifier10.1090/proc/14012
dc.identifierhttp://repositorio.uchile.cl/handle/2250/159360
dc.description.abstractWe give a simple alternative proof for the C-1,C-1-convex extension problem which has been introduced and studied by D. Azagra and C. Mudarra (2017). As an application, we obtain an easy constructive proof for the Glaeser-Whitney problem of C-1,C-1 extensions on a Hilbert space. In both cases we provide explicit formulae for the extensions. For the Glaeser-Whitney problem the obtained extension is almost minimal, that is, minimal up to a multiplicative factor in the sense of Le Gruyer (2009).
dc.languageen
dc.publisherAmer Mathematical Soc
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceProceedings of the American Mathematical Society
dc.subjectWhitney extension problem
dc.subjectConvex extension
dc.subjectSup-inf convolution
dc.subjectSemiconvex function
dc.titleExplicit formulas for C1;1 Glaeser-Whitney extensions of 1-Taylor elds in Hilbert spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución