dc.creatorFontbona Torres, Joaquín
dc.creatorJourdain, B.
dc.date.accessioned2016-06-21T22:40:41Z
dc.date.available2016-06-21T22:40:41Z
dc.date.created2016-06-21T22:40:41Z
dc.date.issued2016
dc.identifierAnnals of Probability Volumen: 44 Número: 1 Páginas: 131-170 (2016)
dc.identifier0091-1798
dc.identifierDOI: 10.1214/14-AOP969
dc.identifierhttps://repositorio.uchile.cl/handle/2250/139070
dc.description.abstractThe dissipation of general convex entropies for continuous time Markov processes can be described in terms of backward martingales with respect to the tail filtration. The relative entropy is the expected value of a backward submartingale. In the case of (non necessarily reversible) Markov diffusion processes, we use Girsanov theory to explicit the Doob-Meyer decomposition of this submartingale. We deduce a stochastic analogue of the well known entropy dissipation formula, which is valid for general convex entropies, including the total variation distance. Under additional regularity assumptions, and using Itˆo’s calculus and ideas of Arnold, Carlen and Ju [2], we obtain moreover a new Bakry Emery criterion which ensures exponential convergence of the entropy to 0. This criterion is non-intrisic since it depends on the square root of the diffusion matrix, and cannot be written only in terms of the diffusion matrix itself. We provide examples where the classic Bakry Emery criterion fails, but our non-intrisic criterion applies without modifying the law of the diffusion process.
dc.languageen
dc.publisherInstitute of Mathematical Statidtics
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectLong-time behaviour
dc.subjectStochastic differential equations
dc.subjectTime reversal
dc.subjectGirsanov theory
dc.subjectBakry Emery criterion
dc.subjectConvex Sobolev inequalities
dc.titleA trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución