dc.creatorDanilidis, Aris
dc.creatorMalick, Jérôme
dc.creatorSendov, Hristo
dc.date.accessioned2015-10-29T20:44:57Z
dc.date.available2015-10-29T20:44:57Z
dc.date.created2015-10-29T20:44:57Z
dc.date.issued2015
dc.identifierJournal of Convex Analysis Volumen: 22 Número: 2 Páginas: 399-426 2015
dc.identifierhttps://repositorio.uchile.cl/handle/2250/134772
dc.description.abstractThis paper studies structural properties of locally symmetric submanifolds. One of the main result states that a locally symmetric submanifold M of R-n admits a locally symmetric tangential parametrization in an appropriately reduced ambient space. This property has its own interest and is the key element to establish, in a follow-up paper [7], that the spectral set lambda(-1) (M) := {X is an element of S-n : lambda(X) is an element of M} consisting of all n x n symmetric matrices having their eigenvalues on M, is a smooth submanifold of the space of symmetric matrices Sn. Here A(X) is the n-dimensional ordered vector of the eigenvalues of X.
dc.languageen
dc.publisherHeldermann Verlag
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectLocally symmetric manifold
dc.subjectSpectral manifold
dc.subjectPermutation
dc.subjectPartition
dc.subjectSymmetric matrix
dc.subjectEigenvalue
dc.titleOn the Structure of Locally Symmetric Manifolds
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución