dc.creatorKoch, Cosima
dc.creatorPosch, Andreas E.
dc.creatorGoicoechea, Hector Casimiro
dc.creatorHerwig, Christoph
dc.creatorLendl, Bernhard
dc.date.accessioned2017-04-19T14:10:04Z
dc.date.accessioned2018-11-06T14:32:05Z
dc.date.available2017-04-19T14:10:04Z
dc.date.available2018-11-06T14:32:05Z
dc.date.created2017-04-19T14:10:04Z
dc.date.issued2014-01
dc.identifierKoch, Cosima; Posch, Andreas E.; Goicoechea, Hector Casimiro; Herwig, Christoph; Lendl, Bernhard; Multi-analyte quantification in bioprocesses by FTIR spectroscopy using Partial Least Squares Regression and Multivariate Curve Resolution; Elsevier Science; Analytica Chimica Acta; 807; 1-2014; 103-110
dc.identifier0003-2670
dc.identifierhttp://hdl.handle.net/11336/15436
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1887434
dc.description.abstractThis paper presents the quantification of Penicillin V and phenoxyacetic acid, a precursor, inline during Pencillium chrysogenum fermentations by FTIR spectroscopy and partial least squares (PLS) regression and multivariate curve resolution – alternating least squares (MCR-ALS). First, the applicability of an attenuated total reflection FTIR fiber optic probe was assessed offline by measuring standards of the analytes of interest and investigating matrix effects of the fermentation broth. Then measurements were performed inline during four fed-batch fermentations with online HPLC for the determination of Penicillin V and phenoxyacetic acid as reference analysis. PLS and MCR-ALS models were built using these data and validated by comparison of single analyte spectra with the selectivity ratio of the PLS models and the extracted spectral traces of the MCR-ALS models, respectively. The achieved root mean square errors of cross-validation for the PLS regressions were 0.22 g L−1 for Penicillin V and 0.32 g L−1 for phenoxyacetic acid and the root mean square errors of prediction for MCR-ALS were 0.23 g L−1 for Penicillin V and 0.15 g L−1 for phenoxyacetic acid. A general work-flow for building and assessing chemometric regression models for the quantification of multiple analytes in bioprocesses by FTIR spectroscopy is given.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://doi.org/10.1016/j.aca.2013.10.042
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0003267013013858
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectINLINE BIOPROCESS MONITORING
dc.subjectFTIR SPECTROSCOPY
dc.subjectPARTIAL LEAST SQUARES REGRESSION
dc.subjectMULTIVARIATE CURVE RESOLUTION
dc.subjectCHEMOMETRICS
dc.subjectP. CHRYSOGENUM
dc.titleMulti-analyte quantification in bioprocesses by FTIR spectroscopy using Partial Least Squares Regression and Multivariate Curve Resolution
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución