dc.creatorRamseyer, Mauricio Javier
dc.creatorSalinas, Oscar Mario
dc.creatorViviani, Beatriz Eleonora
dc.date.accessioned2017-12-18T15:05:37Z
dc.date.accessioned2018-11-06T13:39:47Z
dc.date.available2017-12-18T15:05:37Z
dc.date.available2018-11-06T13:39:47Z
dc.date.created2017-12-18T15:05:37Z
dc.date.issued2016-02
dc.identifierRamseyer, Mauricio Javier; Viviani, Beatriz Eleonora; Salinas, Oscar Mario; Fractional Integrals And RIESZ Transform acting on certain LIPSCHITZ Spaces; Michigan Mathematical Journal; Michigan Mathematical Journal; 65; 1; 2-2016; 35-56
dc.identifier0026-2285
dc.identifierhttp://hdl.handle.net/11336/30866
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1877882
dc.description.abstractWe make a unifying approach to the study of mapping properties of fractional integrals and Riesz transforms acting on spaces of functions f verifying sup B (1 w(a, r) 1 |B| ˆ B |f − mBf| q 1/q )< ∞ , where w is a non negative functional defined on the family of balls B ⊂ Rn with center a and radius r. So, at the same time, we are able to treat such cases as BMO, Lipschitz spaces and spaces of functions with variable smoothness among others. Results about pointwise smoothness related to these spaces are included as well.
dc.languageeng
dc.publisherMichigan Mathematical Journal
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1307/mmj/1457101810
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.mmj/1457101810
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBounded Mean Oscillation,
dc.subjectFractional Integral
dc.subjectRiesz transforms
dc.subjectVariable Exponent
dc.titleFractional Integrals And RIESZ Transform acting on certain LIPSCHITZ Spaces
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución