dc.creatorIglesias, María José
dc.creatorTerrile, Maria Cecilia
dc.creatorWindels, David
dc.creatorLombardo, Maria Cristina
dc.creatorBartoli, Carlos Guillermo
dc.creatorVazquez, Frank
dc.creatorEstelle, Mark
dc.creatorCasalongue, Claudia
dc.date.accessioned2017-02-16T14:06:00Z
dc.date.accessioned2018-11-06T12:55:42Z
dc.date.available2017-02-16T14:06:00Z
dc.date.available2018-11-06T12:55:42Z
dc.date.created2017-02-16T14:06:00Z
dc.date.issued2014-09
dc.identifierIglesias, María José; Terrile, Maria Cecilia; Windels, David; Lombardo, Maria Cristina; Bartoli, Carlos Guillermo; et al.; MiR393 Regulation of Auxin Signaling and Redox-Related Components during Acclimation to Salinity in Arabidopsis; Public Library Of Science; Plos One; 9; 9; 9-2014; 1-13;e107678
dc.identifier1932-6203
dc.identifierhttp://hdl.handle.net/11336/13070
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1871258
dc.description.abstractOne of the most striking aspects of plant plasticity is the modulation of development in response to environmental changes. Plant growth and development largely depend on the phytohormone auxin that exerts its function through a partially redundant family of F-box receptors, the TIR1-AFBs. We have previously reported that the Arabidopsis double mutant tir1 afb2 is more tolerant to salt stress than wild-type plants and we hypothesized that down-regulation of auxin signaling might be part of Arabidopsis acclimation to salinity. In this work, we show that NaCl-mediated salt stress induces miR393 expression by enhancing the transcription of AtMIR393A and leads to a concomitant reduction in the levels of the TIR1 and AFB2 receptors. Consequently, NaCl triggers stabilization of Aux/IAA repressors leading to down-regulation of auxin signaling. Further, we report that miR393 is likely involved in repression of lateral root (LR) initiation, emergence and elongation during salinity, since the mir393ab mutant shows reduced inhibition of emergent and mature LR number and length upon NaCl-treatment. Additionally, mir393ab mutant plants have increased levels of reactive oxygen species (ROS) in LRs, and reduced ascorbate peroxidase (APX) enzymatic activity compared with wild-type plants during salinity. Thus, miR393 regulation of the TIR1 and AFB2 receptors could be a critical checkpoint between auxin signaling and specfic redox-associated components in order to coordinate tissue and time-specific growth responses and tolerance during acclimation to salinity in Arabidopsis.
dc.languageeng
dc.publisherPublic Library Of Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107678
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0107678
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectauxin
dc.subjectmiR393
dc.subjectRedox
dc.titleMiR393 Regulation of Auxin Signaling and Redox-Related Components during Acclimation to Salinity in Arabidopsis
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución