dc.creatorFoglia, Nicolás Oscar
dc.creatorMorzan, Uriel
dc.creatorEstrin, Dario Ariel
dc.creatorScherlis Perel, Damian Ariel
dc.creatorGonzález Lebrero, Mariano Camilo
dc.date.accessioned2018-09-11T15:42:15Z
dc.date.accessioned2018-11-06T11:29:07Z
dc.date.available2018-09-11T15:42:15Z
dc.date.available2018-11-06T11:29:07Z
dc.date.created2018-09-11T15:42:15Z
dc.date.issued2017-01
dc.identifierFoglia, Nicolás Oscar; Morzan, Uriel; Estrin, Dario Ariel; Scherlis Perel, Damian Ariel; González Lebrero, Mariano Camilo; Role of core electrons in quantum dynamics using TDDFT; American Chemical Society; Journal of Chemical Theory and Computation; 13; 1; 1-2017; 77-85
dc.identifier1549-9618
dc.identifierhttp://hdl.handle.net/11336/59055
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1853081
dc.description.abstractThe explicit simulation of time dependent electronic processes requires computationally onerous routes involving the temporal integration of motion equations for the charge density. Efficiency optimization of these methods typically relies on increasing the integration time-step and on the reduction of the computational cost per step. The implicit representation of inner electrons by effective core potentials-or pseudopotentials-is a standard practice in localized-basis quantum-chemistry implementations to improve the efficiency of ground-state calculations, still preserving the quality of the output. This article presents an investigation on the impact that effective core potentials have on the overall efficiency of real time electron dynamics with TDDFT. Interestingly, the speedups achieved with the use of pseudopotentials in this kind of simulation are on average much more significant than in ground-state calculations, reaching in some cases a factor as large as 600×. This boost in performance originates from two contributions: on the one hand, the size of the density matrix, which is considerably reduced, and, on the other, the elimination of high-frequency electronic modes, responsible for limiting the maximum time-step, which vanish when the core electrons are not propagated explicitly. The latter circumstance allows for significant increases in time-step, that in certain cases may reach up to 3 orders of magnitude, without losing any relevant chemical or spectroscopic information.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/acs.jctc.6b00771
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jctc.6b00771
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectTDDFT
dc.subjectPseudopotentials
dc.subjectExcitations
dc.subjectElectrons
dc.titleRole of core electrons in quantum dynamics using TDDFT
dc.typeArtículos de revistas
dc.typeArtículos de revistas
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución