dc.creatorAlbuquerque, Raphael Moreira de
dc.creatorFanomezana, E.
dc.creatorNarison, S.
dc.creatorRabemananjara, A.
dc.date.accessioned2013-11-06T18:40:00Z
dc.date.accessioned2018-07-04T16:19:37Z
dc.date.available2013-11-06T18:40:00Z
dc.date.available2018-07-04T16:19:37Z
dc.date.created2013-11-06T18:40:00Z
dc.date.issued2012
dc.identifierPHYSICS LETTERS B, AMSTERDAM, v. 715, n. 41334, supl. 1, Part 1, pp. 129-141, AUG 29, 2012
dc.identifier0370-2693
dc.identifierhttp://www.producao.usp.br/handle/BDPI/42509
dc.identifier10.1016/j.physletb.2012.07.024
dc.identifierhttp://dx.doi.org/10.1016/j.physletb.2012.07.024
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1634421
dc.description.abstractWe estimate the masses of the 1(--) heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in alpha(s) but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y-c(4260, 4360, 4660) and Y-b(10890) 1(--) experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure 1(--) four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0(++) four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1(--) states, while the splittings between the 0(++) lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1(--) and 0(++) four-quark states which are tiny and which exhibit a 1/M-Q behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHCb and some other hadron factories. (c) 2012 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.publisherAMSTERDAM
dc.relationPHYSICS LETTERS B
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsclosedAccess
dc.subjectQCD SPECTRAL SUM RULES
dc.subjectFOUR-QUARK AND MOLECULE STATES
dc.subjectHEAVY QUARKONIA
dc.title1(--) and 0(++) heavy four-quark and molecule states in QCD
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución