dc.creatorNALDI, M. C.
dc.creatorCAMPELLO, R. J. G. B.
dc.creatorHRUSCHKA, E. R.
dc.creatorCARVALHO, A. C. P. L. F.
dc.date.accessioned2012-10-20T03:30:42Z
dc.date.accessioned2018-07-04T15:37:48Z
dc.date.available2012-10-20T03:30:42Z
dc.date.available2018-07-04T15:37:48Z
dc.date.created2012-10-20T03:30:42Z
dc.date.issued2011
dc.identifierAPPLIED SOFT COMPUTING, v.11, n.2, p.1938-1952, 2011
dc.identifier1568-4946
dc.identifierhttp://producao.usp.br/handle/BDPI/28740
dc.identifier10.1016/j.asoc.2010.06.010
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2010.06.010
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1625382
dc.description.abstractOne of the top ten most influential data mining algorithms, k-means, is known for being simple and scalable. However, it is sensitive to initialization of prototypes and requires that the number of clusters be specified in advance. This paper shows that evolutionary techniques conceived to guide the application of k-means can be more computationally efficient than systematic (i.e., repetitive) approaches that try to get around the above-mentioned drawbacks by repeatedly running the algorithm from different configurations for the number of clusters and initial positions of prototypes. To do so, a modified version of a (k-means based) fast evolutionary algorithm for clustering is employed. Theoretical complexity analyses for the systematic and evolutionary algorithms under interest are provided. Computational experiments and statistical analyses of the results are presented for artificial and text mining data sets. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherELSEVIER SCIENCE BV
dc.relationApplied Soft Computing
dc.rightsCopyright ELSEVIER SCIENCE BV
dc.rightsrestrictedAccess
dc.subjectk-means
dc.subjectEvolutionary clustering
dc.subjectData mining
dc.titleEfficiency issues of evolutionary k-means
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución