dc.creatorPEREIRA, Marcelo Alves
dc.date.accessioned2012-03-26T15:56:56Z
dc.date.accessioned2018-07-04T14:03:29Z
dc.date.available2012-03-26T15:56:56Z
dc.date.available2018-07-04T14:03:29Z
dc.date.created2012-03-26T15:56:56Z
dc.date.issued2008
dc.identifierBrazilian Journal of Physics, v.38, n.1, p.65-69, 2008
dc.identifier0103-9733
dc.identifierhttp://producao.usp.br/handle/BDPI/6789
dc.identifier10.1590/S0103-97332008000100013
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332008000100013
dc.identifierhttp://www.scielo.br/pdf/bjp/v38n1/a13v38n1.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1605289
dc.description.abstractThe Prisoner's Dilemma (PD) is one of the most popular games of the Game Theory due to the emergence of cooperation among competitive rational players. In this paper, we present the PD played in cells of one-dimension cellular automata, where the number of possible neighbors that each cell interacts, z, can vary. This makes possible to retrieve results obtained previously in regular lattices. Exhaustive exploration of the parameters space is presented. We show that the final state of the system is governed mainly by the number of neighbors z and there is a drastic difference if it is even or odd.
dc.languageeng
dc.publisherSociedade Brasileira de Física
dc.relationBrazilian Journal of Physics
dc.rightsCopyright Sociedade Brasileira de Física
dc.rightsopenAccess
dc.subjectPrisoner Dilemma
dc.subjectEmergence of Cooperation
dc.subjectGame Theory
dc.subjectOne-dimensional cellular automata
dc.subjectNonequilibrium phase transition
dc.titleExhaustive exploration of Prisoner's Dilemma Parameter space in one-dimensional cellular automata
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución