dc.creatorGIRALDI, Gilson A.
dc.creatorRODRIGUES, Paulo S.
dc.creatorKITANI, Edson C.
dc.creatorSATO, João R.
dc.creatorTHOMAZ, Carlos E.
dc.date.accessioned2012-03-26T02:17:53Z
dc.date.accessioned2018-07-04T13:54:46Z
dc.date.available2012-03-26T02:17:53Z
dc.date.available2018-07-04T13:54:46Z
dc.date.created2012-03-26T02:17:53Z
dc.date.issued2008
dc.identifierJournal of the Brazilian Computer Society, v.14, n.2, p.7-22, 2008
dc.identifier0104-6500
dc.identifierhttp://producao.usp.br/handle/BDPI/4558
dc.identifier10.1590/S0104-65002008000200002
dc.identifierhttp://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-65002008000200002
dc.identifierhttp://www.scielo.br/pdf/jbcos/v14n2/a02v14n2.pdf
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1603356
dc.description.abstractSupervised statistical learning covers important models like Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA). In this paper we describe the idea of using the discriminant weights given by SVM and LDA separating hyperplanes to select the most discriminant features to separate sample groups. Our method, called here as Discriminant Feature Analysis (DFA), is not restricted to any particular probability density function and the number of meaningful discriminant features is not limited to the number of groups. To evaluate the discriminant features selected, two case studies have been investigated using face images and breast lesion data sets. In both case studies, our experimental results show that the DFA approach provides an intuitive interpretation of the differences between the groups, highlighting and reconstructing the most important statistical changes between the sample groups analyzed.
dc.languageeng
dc.publisherSociedade Brasileira de Computação
dc.relationJournal of the Brazilian Computer Society
dc.rightsCopyright Sociedade Brasileira de Computação
dc.rightsopenAccess
dc.subjectSupervised statistical learning
dc.subjectDiscriminant features selection
dc.subjectSeparating hyperplanes
dc.titleStatistical learning approaches for discriminant features selection
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución