Artículos de revistas
Penicillium Echinulatum Secretome Analysis Reveals The Fungi Potential For Degradation Of Lignocellulosic Biomass
Registro en:
Biotechnology For Biofuels. BIOMED CENTRAL LTD, n. 9, n. 66, p. .
1754-6834
WOS:000372490700001
10.1186/s13068-016-0476-3
Autor
Schneider
WDH; Goncalves
TA; Uchima
CA; Couger
MB; Prade
R; Squina
FM; Dillon
AJP; Camassola
M
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) The enzymatic degradation of lignocellulosic materials by fungal enzyme systems has been extensively studied due to its effectiveness in the liberation of fermentable sugars for bioethanol production. Recently, variants of the fungus Penicillium echinulatum have been described as a great producer of cellulases and considered a promising strain for the bioethanol industry. Results: Penicillium echinulatum, wild-type 2HH and its mutant strain S1M29, were grown on four different carbon sources: cellulose, sugar cane bagasse pretreated by steam explosion (SCB), glucose, and glycerol for 120 h. Samples collected at 24, 96, and 120 h were used for enzymatic measurement, and the 96-h one was also used for secretome analysis by 1D-PAGE LC-MS/MS. A total of 165 proteins were identified, and more than one-third of these proteins belong to CAZy families. Glycosyl hydrolases (GH) are the most abundant group, being represented in larger quantities by GH3, 5, 17, 43, and 72. Cellobiohydrolases, endoglucanases, beta-glycosidases, xylanases, beta-xylosidases, and mannanases were found, and in minor quantities, pectinases, ligninases, and amylases were also found. Swollenin and esterases were also identified. Conclusions: Our study revealed differences in the two strains of P. echinulatum in several aspects in which the mutation improved the production of enzymes related to lignocellulosic biomass deconstruction. Considering the spectral counting analysis, the mutant strain S1M29 was more efficient in the production of enzymes involved in cellulose and hemicellulose degradation, despite having a nearly identical CAZy enzymatic repertoire. Moreover, S1M29 secretes more quantities of protein on SCB than on cellulose, relevant information when considering the production of cellulases using raw materials at low cost. Glucose, and especially glycerol, were used mainly for the production of amylases and ligninases. 9
FAPESP (The State of Sao Paulo Research Foundation) [2008/58037-9, 2014/06923-6, 2012/19040-0] National Council for Scientific and Technological Development (CNPq) [310186/2014-5, 442333/2014-5, 140796/2013-4] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)