dc.creatorAsadzadeh
dc.creatorS; de Souza
dc.creatorCR
dc.date2016
dc.date2016-12-06T18:30:12Z
dc.date2016-12-06T18:30:12Z
dc.date.accessioned2018-03-29T02:02:46Z
dc.date.available2018-03-29T02:02:46Z
dc.identifier
dc.identifierInternational Journal Of Applied Earth Observation And Geoinformation. ELSEVIER SCIENCE BV, n. 47, p. 69 - 90.
dc.identifier0303-2434
dc.identifierWOS:000371099000007
dc.identifier10.1016/j.jag.2015.12.004
dc.identifierhttp://www-sciencedirect-com.ez88.periodicos.capes.gov.br/science/article/pii/S0303243415300696
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/319980
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1310746
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionIn this work, many of the fundamental and advanced spectral processing methods available to geologic remote sensing are reviewed. A novel categorization scheme is proposed that groups the techniques into knowledge-based and data-driven approaches, according to the type and availability of reference data. The. two categories are compared and their characteristics and geologic outcomes are contrasted. Using an oil-sand sample scanned through the sisuCHEMA hyperspectral imaging system as a case study, the effectiveness of selected processing techniques from each category is demonstrated. The techniques used to bridge between the spectral data and other geoscience products are then discussed. Subsequently, the hybridization of the two approaches is shown to yield some of the most robust processing techniques available to multi- and hyperspectral remote sensing. Ultimately, current and future challenges that spectral analysis are expected to overcome and some potential trends are highlighted. (C) 2015 Elsevier B.V. All rights reserved.
dc.description47
dc.description
dc.description69
dc.description90
dc.descriptionCAPES
dc.descriptionCNPq
dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description
dc.description
dc.description
dc.languageEnglish
dc.publisherELSEVIER SCIENCE BV
dc.publisherAMSTERDAM
dc.relationInternational Journal of Applied Earth Observation and Geoinformation
dc.rightsfechado
dc.sourceWOS
dc.subjectSpectral Processing
dc.subjectGeologic Remote Sensing
dc.subjectMineral Mapping
dc.subjectAlgorithm
dc.subjectCategorization
dc.subjectMultispectral
dc.subjectHyperspectral
dc.titleA Review On Spectral Processing Methods For Geological Remote Sensing
dc.typeResenha


Este ítem pertenece a la siguiente institución