dc.creatorGoncalves, ML
dc.creatorNetto, MLA
dc.creatorCosta, JAF
dc.creatorZullo, J
dc.date2008
dc.date2014-07-30T13:48:49Z
dc.date2015-11-26T18:03:36Z
dc.date2014-07-30T13:48:49Z
dc.date2015-11-26T18:03:36Z
dc.date.accessioned2018-03-29T00:45:33Z
dc.date.available2018-03-29T00:45:33Z
dc.identifierInternational Journal Of Remote Sensing. Taylor & Francis Ltd, v. 29, n. 11, n. 3171, n. 3207, 2008.
dc.identifier0143-1161
dc.identifierWOS:000256386200009
dc.identifier10.1080/01431160701442146
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54501
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54501
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1292597
dc.descriptionUnlike conventional unsupervised classification methods, such as K-means and ISODATA, which are based on partitional clustering techniques, the methodology proposed in this work attempts to take advantage of the properties of Kohonen's self-organizing map (SOM) together with agglomerative hierarchical clustering methods to perform the automatic classification of remotely sensed images. The key point of the proposed method is to execute the cluster analysis process by means of a set of SOM prototypes, instead of working directly with the original patterns of the image. This strategy significantly reduces the complexity of the data analysis, making it possible to use techniques that have not normally been considered viable in the processing of remotely sensed images, such as hierarchical clustering methods and cluster validation indices. Through the use of the SOM, the proposed method maps the original patterns of the image to a two-dimensional neural grid, attempting to preserve the probability distribution and topology of the input space. Afterwards, an agglomerative hierarchical clustering method with restricted connectivity is applied to the trained neural grid, generating a simplified dendrogram for the image data. Utilizing SOM statistic properties, the method employs modified versions of cluster validation indices to automatically determine the ideal number of clusters for the image. The experimental results show examples of the application of the proposed methodology and compare its performance to the K-means algorithm.
dc.description29
dc.description11
dc.description3171
dc.description3207
dc.languageen
dc.publisherTaylor & Francis Ltd
dc.publisherAbingdon
dc.publisherInglaterra
dc.relationInternational Journal Of Remote Sensing
dc.relationInt. J. Remote Sens.
dc.rightsfechado
dc.rightshttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dc.sourceWeb of Science
dc.subjectAsymptotic Level Density
dc.subjectSupport Vector Machines
dc.subjectK-means Algorithm
dc.subjectNeural-networks
dc.subjectLand-cover
dc.subjectMultispectral Images
dc.subjectSensing Images
dc.subjectSupervised Classification
dc.subjectSpatial Information
dc.subjectSegmentation
dc.titleAn unsupervised method of classifying remotely sensed images using Kohonen self-organizing maps and agglomerative hierarchical clustering methods
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución