dc.creatorMarenich, V
dc.date1997
dc.dateJUL
dc.date2014-12-16T11:33:00Z
dc.date2015-11-26T17:52:10Z
dc.date2014-12-16T11:33:00Z
dc.date2015-11-26T17:52:10Z
dc.date.accessioned2018-03-29T00:35:37Z
dc.date.available2018-03-29T00:35:37Z
dc.identifierGeometriae Dedicata. Kluwer Academic Publ, v. 66, n. 2, n. 175, n. 185, 1997.
dc.identifier0046-5755
dc.identifierWOS:A1997XL23400005
dc.identifier10.1023/A:1004916117293
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/67978
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/67978
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/67978
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1290170
dc.descriptionWe obtain equations of geodesic lines in Heisenberg groups H(2n+1)and prove that the ideal boundary of the Heisenberg group H2n+1 is a sphere S2n-1 with a natural CR-structure and corresponding Carnot-Caratheodory metric, i.e. it is a one-point compactification of the Heisenberg group H2n-1 of the next dimension in a row.
dc.description66
dc.description2
dc.description175
dc.description185
dc.languageen
dc.publisherKluwer Academic Publ
dc.publisherDordrecht
dc.publisherHolanda
dc.relationGeometriae Dedicata
dc.relationGeod. Dedic.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectHeisenberg group
dc.subjectgeodesic line
dc.subjectideal boundary
dc.subjectGeometry
dc.titleGeodesics in Heisenberg groups
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución