dc.creator | Marenich, V | |
dc.date | 1997 | |
dc.date | JUL | |
dc.date | 2014-12-16T11:33:00Z | |
dc.date | 2015-11-26T17:52:10Z | |
dc.date | 2014-12-16T11:33:00Z | |
dc.date | 2015-11-26T17:52:10Z | |
dc.date.accessioned | 2018-03-29T00:35:37Z | |
dc.date.available | 2018-03-29T00:35:37Z | |
dc.identifier | Geometriae Dedicata. Kluwer Academic Publ, v. 66, n. 2, n. 175, n. 185, 1997. | |
dc.identifier | 0046-5755 | |
dc.identifier | WOS:A1997XL23400005 | |
dc.identifier | 10.1023/A:1004916117293 | |
dc.identifier | http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/67978 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/67978 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/67978 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1290170 | |
dc.description | We obtain equations of geodesic lines in Heisenberg groups H(2n+1)and prove that the ideal boundary of the Heisenberg group H2n+1 is a sphere S2n-1 with a natural CR-structure and corresponding Carnot-Caratheodory metric, i.e. it is a one-point compactification of the Heisenberg group H2n-1 of the next dimension in a row. | |
dc.description | 66 | |
dc.description | 2 | |
dc.description | 175 | |
dc.description | 185 | |
dc.language | en | |
dc.publisher | Kluwer Academic Publ | |
dc.publisher | Dordrecht | |
dc.publisher | Holanda | |
dc.relation | Geometriae Dedicata | |
dc.relation | Geod. Dedic. | |
dc.rights | fechado | |
dc.source | Web of Science | |
dc.subject | Heisenberg group | |
dc.subject | geodesic line | |
dc.subject | ideal boundary | |
dc.subject | Geometry | |
dc.title | Geodesics in Heisenberg groups | |
dc.type | Artículos de revistas | |