dc.creatorOisiovici, RM
dc.creatorCruz, SL
dc.date2000
dc.dateOCT
dc.date2014-12-02T16:24:44Z
dc.date2015-11-26T17:18:47Z
dc.date2014-12-02T16:24:44Z
dc.date2015-11-26T17:18:47Z
dc.date.accessioned2018-03-29T00:06:28Z
dc.date.available2018-03-29T00:06:28Z
dc.identifierChemical Engineering Science. Pergamon-elsevier Science Ltd, v. 55, n. 20, n. 4667, n. 4680, 2000.
dc.identifier0009-2509
dc.identifierWOS:000089334300022
dc.identifier10.1016/S0009-2509(00)00088-9
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/74550
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/74550
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/74550
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282743
dc.descriptionComposition monitoring and control play an essential role during a batch distillation cycle, but on-line composition analyzers are expensive, difficult to maintain and give delayed responses. Considering the need and lack of a stochastic estimator for batch distillation columns, a discrete extended Kalman filter (EKF) for binary and multicomponent systems has been developed and tested. The aim of the EKF was to provide reliable and real-time column composition profiles from few temperature measurements and easily available information. Accurate composition estimates and fast convergence were obtained, and the EKF has confirmed its ability to incorporate the effects of noise (from both measurement and modeling). The number of sensors and the observation frequency have shown to be important variables in the design of the EKF, especially for systems with fast dynamics. (C) 2000 Elsevier Science Ltd. All rights reserved.
dc.description55
dc.description20
dc.description4667
dc.description4680
dc.languageen
dc.publisherPergamon-elsevier Science Ltd
dc.publisherOxford
dc.publisherInglaterra
dc.relationChemical Engineering Science
dc.relationChem. Eng. Sci.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectbatch distillation
dc.subjectKalman filtering
dc.subjectstochastic estimator
dc.subjectdiscrete systems
dc.subjectinference
dc.subjectnonlinear
dc.subjectPilot-plant
dc.subjectMixtures
dc.subjectObserver
dc.subjectBinary
dc.subjectDesign
dc.titleState estimation of batch distillation columns using an extended Kalman filter
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución