dc.creatorMatos, MC
dc.date2003
dc.date2014-11-14T19:37:27Z
dc.date2015-11-26T17:16:40Z
dc.date2014-11-14T19:37:27Z
dc.date2015-11-26T17:16:40Z
dc.date.accessioned2018-03-29T00:04:50Z
dc.date.available2018-03-29T00:04:50Z
dc.identifierMathematische Nachrichten. Wiley-v C H Verlag Gmbh, v. 258, n. 71, n. 89, 2003.
dc.identifier0025-584X
dc.identifierWOS:000185560300005
dc.identifier10.1002/mana.200310087
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/62006
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/62006
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/62006
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1282338
dc.descriptionA mapping f, defined on an open subset A of a Banach space E, with values in another Banach space F, such that (f (a+x(j)) - f (a))(j=1)(infinity) is absolutely summable in F, whenever (x(j))(j=1)(infinity) is unconditionally summable (respectively, absolutely summable) in E, is called absolutely summing (respectively, regularly summing) at the point a E A. It is proved that f is regularly summing at a if, and only if, there are M > 0 and delta > 0, such that parallel to f (a + x) - f (a) parallel to less than or equal to M parallel to x parallel to, for all parallel to x parallel to < delta. This result has as a consequence a characterization of absolutely summing mappings by means of inequalities. This result is analogous to the well know characterization of the linear absolutely summing mappings. Several results and examples show that the existence of non-linear absolutely summing mappings is not a rare phenomena. A Dvoretzky-Rogers Theorem for n-homogeneous polynomials is proved. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.description258
dc.description71
dc.description89
dc.languageen
dc.publisherWiley-v C H Verlag Gmbh
dc.publisherWeinheim
dc.publisherAlemanha
dc.relationMathematische Nachrichten
dc.relationMath. Nachr.
dc.rightsfechado
dc.rightshttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dc.sourceWeb of Science
dc.subjectnonlinear absolutely summing mappings
dc.subjectBanach space
dc.subjectholomorphic mappings
dc.subjectpolynomials
dc.subjectOperators
dc.titleNonlinear absolutely summing mappings
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución