dc.creatorSantos, MDS
dc.creatorDel Lama, MPFD
dc.creatorIto, AS
dc.creatorNaal, RMZG
dc.date2014
dc.dateMAR
dc.date2014-07-30T13:51:56Z
dc.date2015-11-26T17:10:29Z
dc.date2014-07-30T13:51:56Z
dc.date2015-11-26T17:10:29Z
dc.date.accessioned2018-03-28T23:59:03Z
dc.date.available2018-03-28T23:59:03Z
dc.identifierJournal Of Luminescence. Elsevier Science Bv, v. 147, n. 49, n. 58, 2014.
dc.identifier0022-2313
dc.identifier1872-7883
dc.identifierWOS:000331667900009
dc.identifier10.1016/j.jlumin.2013.10.037
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/55479
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/55479
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1280873
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThe pharmacological action of chloroquine relies on its ability to cross biological membranes in order to accumulate inside lysosomes. The present work aimed at understanding the basis for the interaction between different chloroquine species and ionic micelles of opposite charges, the latter used as a simple membrane model. The sensitivity of absorbance and fluorescence of chloroquine to changes in its local environment was used to probe its interaction with cetyltrimethylammonium micelles presenting bromide (CTAB) and sulfate (CTAS) as counterions, in addition to dodecyl sulfate micelles bearing sodium (SDS) and tetramethylammonium (TMADS) counterions. Counterion exchange was shown to have little effect on drug-micelle interaction. Chloroquine first dissociation constant (pKa(1)) shifted to opposite directions when anionic and cationic micelles were compared. Chloroquine binding constants (K-b) revealed that electrostatic forces mediate charged drug-micelle association, whereas hydrophobic interactions allowed neutral chloroquine to associate with anionic and cationic micelles. Fluorescence quenching studies indicated that monoprotonated chloroquine is inserted deeper into the micelle surface of anionic micelles than its neutral form, the latter being less exposed to the aqueous phase when associated with cationic over anionic assemblies. The findings provide further evidence that chloroquine-micelle interaction is driven by a tight interplay between the drug form and the micellar surface charge, which can have a major effect on the drug biological activity. (C) 2013 Elsevier B.V. All rights reserved.
dc.description147
dc.description49
dc.description58
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionFAPESP [05/53002-4]
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationJournal Of Luminescence
dc.relationJ. Lumines.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectChloroquine
dc.subjectSOS micelles
dc.subjectCTAB micelles
dc.subjectDissociation constants
dc.subjectBinding constants
dc.subjectSteady-state and time-resolved fluorescence quenching
dc.subjectSodium Dodecyl-sulfate
dc.subjectPhotophysical Properties
dc.subjectElectronic Absorption
dc.subjectAqueous-solution
dc.subjectSds Micelles
dc.subjectFluorescence
dc.subjectMalaria
dc.subjectSystems
dc.subjectDrug
dc.subjectAntimalarials
dc.titleBinding of chloroquine to ionic micelles: Effect of pH and micellar surface charge
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución