dc.creatorOliveira, RM
dc.creatorFerreira, PAV
dc.date2008
dc.dateAUG
dc.date2014-11-19T04:33:10Z
dc.date2015-11-26T17:02:06Z
dc.date2014-11-19T04:33:10Z
dc.date2015-11-26T17:02:06Z
dc.date.accessioned2018-03-28T23:50:05Z
dc.date.available2018-03-28T23:50:05Z
dc.identifierJournal Of Global Optimization. Springer, v. 41, n. 4, n. 579, n. 592, 2008.
dc.identifier0925-5001
dc.identifierWOS:000256964200005
dc.identifier10.1007/s10898-007-9267-5
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/53039
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/53039
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/53039
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1278842
dc.descriptionGlobal optimization problems involving the minimization of a product of convex functions on a convex set are addressed in this paper. Elements of convex analysis are used to obtain a suitable representation of the convex multiplicative problem in the outcome space, where its global solution is reduced to the solution of a sequence of quasiconcave minimizations on polytopes. Computational experiments illustrate the performance of the global optimization algorithm proposed.
dc.description41
dc.description4
dc.description579
dc.description592
dc.languageen
dc.publisherSpringer
dc.publisherDordrecht
dc.publisherHolanda
dc.relationJournal Of Global Optimization
dc.relationJ. Glob. Optim.
dc.rightsfechado
dc.rightshttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dc.sourceWeb of Science
dc.subjectglobal optimization
dc.subjectmultiplicative programming
dc.subjectconvex analysis
dc.subjectnumerical methods
dc.subjectGlobal Optimization
dc.subjectMinimization
dc.subjectAlgorithm
dc.subjectSpace
dc.subjectDuality
dc.subjectBranch
dc.subjectBounds
dc.titleA convex analysis approach for convex multiplicative programming
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución