dc.creatorAndreani, R
dc.creatorMartinez, JM
dc.date2000
dc.date38869
dc.date2014-08-01T18:32:12Z
dc.date2015-11-26T17:01:46Z
dc.date2014-08-01T18:32:12Z
dc.date2015-11-26T17:01:46Z
dc.date.accessioned2018-03-28T23:49:41Z
dc.date.available2018-03-28T23:49:41Z
dc.identifierSiam Journal On Optimization. Siam Publications, v. 10, n. 3, n. 878, n. 895, 2000.
dc.identifier1052-6234
dc.identifierWOS:000087452000013
dc.identifier10.1137/S1052623499352826
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/80381
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/80381
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1278785
dc.descriptionMany variational inequality problems (VIPs) can be reduced, by a compactification procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied, including smooth reformulations with simple constraints and unconstrained reformulations based on the penalized Fischer-Burmeister function. It is proved that bounded level set results hold for these reformulations under quite general assumptions on the operator. Therefore, it can be guaranteed that minimization algorithms generate bounded sequences and, under monotonicity conditions, these algorithms necessarily nd solutions of the original problem. Some numerical experiments are presented.
dc.description10
dc.description3
dc.description878
dc.description895
dc.languageen
dc.publisherSiam Publications
dc.publisherPhiladelphia
dc.publisherEUA
dc.relationSiam Journal On Optimization
dc.relationSIAM J. Optim.
dc.rightsaberto
dc.sourceWeb of Science
dc.subjectvariational inequalities
dc.subjectcomplementarity
dc.subjectminimization algorithms
dc.subjectreformulation
dc.subjectBound Constrained Optimization
dc.subjectConvex Minimization Problems
dc.subjectNonlinear Complementarity
dc.subjectNewton Method
dc.subjectAlgorithm
dc.subjectSystems
dc.titleReformulation of variational inequalities on a simplex and compactification of complementarity problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución