dc.creatorPastore, HO
dc.creatorMunsignatti, M
dc.creatorBittencourt, DRS
dc.creatorRippel, MM
dc.date1999
dc.date42309
dc.date2014-12-02T16:26:27Z
dc.date2015-11-26T16:26:55Z
dc.date2014-12-02T16:26:27Z
dc.date2015-11-26T16:26:55Z
dc.date.accessioned2018-03-28T23:07:47Z
dc.date.available2018-03-28T23:07:47Z
dc.identifierMicroporous And Mesoporous Materials. Elsevier Science Bv, v. 32, n. 41671, n. 211, n. 228, 1999.
dc.identifier1387-1811
dc.identifierWOS:000083499200021
dc.identifier10.1016/S1387-1811(99)00108-0
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/74626
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/74626
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/74626
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1269032
dc.descriptionThis work describes the mesophases obtained when mesoporous silicates are synthesized in the presence of hydrofluoric, hydrochloric, hydroiodic, acetic or nitric acids. The results show that when the silicate precursor is varied different phases or mixture of phases can be obtained. Thus pure-silica MCM-41 is obtained from sodium silicate or [(TMA)SiO2.5](8) and cetyltrimethylammonium bromide in the presence of acetic, hydrofluoric and hydrochloric acids. Hydroiodic acid affords a mixture of phases from both sources of silica after either mild thermal (347-349 K) or hydrothermal (423 K) treatments. Upon removal of the organic counterpart, MCM-41 is formed from tetramethylammonium silicate and magadiite from sodium silicate. The presence of nitric acid yields MCM-41, for sodium silicate and when HNO3 is used, for tetramethylammonium silicate, after mild thermal treatment. Upon hydrothermal treatment, MCM-41 converts to magadiife. The presence of aluminosilicate anions causes the appearance of phases mixture for nitric and hydrofluoric acids in high surfactant:silicon molar ratios. These results show that the mesophase formation might be the product of competition reactions involving the surfactant, silicate anions and the acid anions present in the reaction mixture. There seems to be a compromise between silicate and aluminosilicate charge density and basicity on the process of assembling and polymerizing (alumino)silicates species on CTA(+) arrangements. Charge density is likely to direct the choice of species that are drawn to the organo-inorganic interface: the highly charged silicate species or the aluminosilicate ones are the first assembled. The polymerization process affects the basicity of species, turning them more or less capable of competing with acid anions for the CTA(+) molecules. When acid anions bind more effectively with CTA(+), they displace silicate or aluminosilicate species and might remain in the solid as contaminating phases. (C) 1999 Elsevier Science B.V. All rights reserved.
dc.description32
dc.description41671
dc.description211
dc.description228
dc.languageen
dc.publisherElsevier Science Bv
dc.publisherAmsterdam
dc.publisherHolanda
dc.relationMicroporous And Mesoporous Materials
dc.relationMicroporous Mesoporous Mat.
dc.rightsfechado
dc.rightshttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dc.sourceWeb of Science
dc.subjectinfluence of inorganic anions
dc.subjectliquid crystals
dc.subjectmesoporous materials
dc.subjectmolecular sieves
dc.subjectsupramolecular assemblies
dc.subjectsurfactants
dc.subjectFluoride Medium
dc.subjectSurfactant
dc.subjectDilute
dc.subjectPhases
dc.subjectOrganization
dc.subjectVesicles
dc.subjectLamellar
dc.subjectMicelle
dc.subjectMcm-41
dc.titleStudy on the formation of mesoporous molecular sieves in the presence of various anions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución