Artículos de revistas
Asymptotic angular stability in non-linear systems: rotation numbers and winding numbers
Registro en:
Dynamical Systems-an International Journal. Taylor & Francis Ltd, v. 18, n. 3, n. 191, n. 200, 2003.
1468-9367
WOS:000186605100001
10.1080/1468936031000155927
Autor
McSharry, PE
Ruffino, PRC
Institución
Resumen
The asymptotic angular stability of a dynamical system may be quantified by its rotation number or its winding number. These two quantities are shown to result from different assumptions, made about the flow generating the Poincare map which results from the sequence of homeomorphisms in S-1. An ergodic theorem of existence a.s. of the rotation number for non-linear systems is given. The advantages and disadvantages of both the rotation and winding numbers are discussed. Numerical calculations of the distribution of rotation number and winding number arising from different initial conditions are presented for three different chaotic maps. 18 3 191 200