dc.creatorRodriguez, RQ
dc.creatorGalvis, AF
dc.creatorSollero, P
dc.creatorAlbuquerque, EL
dc.date2013
dc.dateDEC
dc.date2014-07-30T13:48:58Z
dc.date2015-11-26T16:03:31Z
dc.date2014-07-30T13:48:58Z
dc.date2015-11-26T16:03:31Z
dc.date.accessioned2018-03-28T22:52:45Z
dc.date.available2018-03-28T22:52:45Z
dc.identifierCmes-computer Modeling In Engineering & Sciences. Tech Science Press, v. 96, n. 4, n. 259, n. 274, 2013.
dc.identifier1526-1492
dc.identifier1526-1506
dc.identifierWOS:000329264600003
dc.identifierhttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/54578
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/54578
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1265286
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionOver recent years the rapid evolution of the computational power has motivated the development of new numerical techniques to account for engineering solutions. The Boundary Element Method (BEM) has shown to be a powerful numeric tool for the analysis and solution of many physical and engineering problems. However, BEM fully populated and non-symmetric system matrices implies in higher memory requirements and solution times. This work analyze the application of hierarchical matrices and low rank approximations, applying the Adaptive Cross Approximation - ACA, to multiple inclusion potential problems. The use of hierarchical format is aimed at reducing the storage requirement and the computational complexity arising in the BEM. First, the use of hierarchical matrices and low rank approximation on multidomain potential problems is depicted. Finally, a numerical example is performed to show the applicability of using ACA in large-scale multidomain problems. Moreover, the application of ACA to multidomain problems showed to be an important option in future multiscale problem analyses.
dc.description96
dc.description4
dc.descriptionSI
dc.description259
dc.description274
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.languageen
dc.publisherTech Science Press
dc.publisherNorcross
dc.publisherEUA
dc.relationCmes-computer Modeling In Engineering & Sciences
dc.relationCMES-Comp. Model. Eng. Sci.
dc.rightsfechado
dc.sourceWeb of Science
dc.subjectAdaptative Cross Approximation
dc.subjectBoundary Element Method
dc.subjectHierarchical Matrices
dc.subjectMultidomain problems
dc.subjectBoundary-element Matrices
dc.subjectHierarchical Matrices
dc.subjectH-matrices
dc.subjectHeterogeneous Materials
dc.subjectEffective Conductivity
dc.subjectTransport-properties
dc.subjectRandom Composite
dc.subjectVoronoi Cells
dc.subjectBem
dc.subjectSuspensions
dc.titleAnalysis of Multiple Inclusion Potential Problems by the Adaptive Cross Approximation Method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución