dc.creatorCaetano M.
dc.creatorManzolli J.
dc.creatorVon Zuben F.J.
dc.date2005
dc.date2015-06-26T14:07:25Z
dc.date2015-11-26T15:41:38Z
dc.date2015-06-26T14:07:25Z
dc.date2015-11-26T15:41:38Z
dc.date.accessioned2018-03-28T22:50:09Z
dc.date.available2018-03-28T22:50:09Z
dc.identifier
dc.identifierLecture Notes In Computer Science. , v. 3627, n. , p. 389 - 403, 2005.
dc.identifier3029743
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-26944466318&partnerID=40&md5=79975b14b03ede3381c5780b460a5382
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93347
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93347
dc.identifier2-s2.0-26944466318
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1264663
dc.descriptionComputer generated sounds for music applications have many facets, of which timbre design is of groundbreaking significance. Timbre is a remarkable and rather complex phenomenon that has puzzled researchers for a long time. Actually, the nature of musical signals is not fully understood yet. In this paper, we present a sound synthesis method using an artificial immune network for data clustering, denoted aiNet. Sounds produced by the method are referred to as immunological sounds. Basically, antibody-sounds are generated to recognize a fixed and predefined set of antigen-sounds, thus producing timbral variants with the desired characteristics. The aiNet algorithm provides maintenance of diversity and an adaptive number of resultant antibody-sounds (memory cells), so that the intended aesthetical result is properly achieved by avoiding the formal definition of the timbral attributes. The initial set of antibody-sounds may be randomly generated vectors, sinusoidal waves with random frequency, or a set of loaded waveforms. To evaluate the obtained results we propose an affinity measure based on the average spectral distance from the memory cells to the antigen-sounds. With the validation of the affinity criterion, the experimental procedure is outlined, and the results are depicted and analyzed. © Springer-Verlag Berlin Heidelberg 2005.
dc.description3627
dc.description
dc.description389
dc.description403
dc.descriptionBiles, J.A., GenJam: A genetic algorithm for generating jazz solos (1994) Proceedings of the 1994 International Computer Music Conference, (ICMC'94), pp. 131-137
dc.descriptionBurnet, P.M., (1959) The Clonal Selection Theory of Acquired Immunity, , Cambridge University Press
dc.descriptionBurraston, D., Edmonds, E.A., Livingstone, D., Miranda, E., Cellular automata in MIDI based computer music (2004) Proceedings of the Internationalcomputer Music Conference, pp. 71-78
dc.descriptionCaetano, M., Manzolli, J., Von Zuben, F.J., Interactive control of evolution applied to sound synthesis (2005) Proceedings of the 18th International Florida Artificial Intelligence Research Society (FLAIRS), , Clearwater, EUA
dc.descriptionChao, D., Forrest, S., Generating biomorphs with an aesthetic immune system (2002) Proceedings of the Eighth International Conference on Artificial Life, pp. 89-92. , MIT Press
dc.descriptionChen, C.J., Miikkulainen, R., Creating melodies with evolving recurrent neural networks (2001) Proceedings of the International Joint Conference on Neural Networks (IJCNN-01), pp. 2241-2246
dc.descriptionChowning, J., Computer synthesis of the singing voice (1980) Sound Generation in Winds, Strings, and Computers, , Joan Sundberg (ed.), Stockholm: Royal Swedish Academy of Music
dc.descriptionDasgupta, D., (1999) Artificial Immune Systems and Their Applications, , Springer-Verlag, (ed.)
dc.descriptionDawkins, R., (1986) The Blind Watchmaker, , Penguin Books
dc.descriptionDe Castro, L.N., Timmis, J.I., (2002) Artificial Immune Systems: A New Computational Intelligence Approach, , Springer-Verlag, London
dc.descriptionDe Castro, L.N., Von Zuben, F., AiNET: An artificial immune network for data analysis (2001) Data Mining: A Heuristic Approach, , Abbas, H, Sarker, R and Newton, C (Eds). Idea Group Publishing
dc.descriptionDodge, C., Jerse, T.A., (1985) Computer Music, Synthesis, Composition and Performance, , Schirmer Books, ISBN 0-02-873100-X
dc.descriptionFornari, J.E., (2001) Evolutionary Syhnthesis of Sound Segments, , Ph.D. Thesis, Dept. of Semiconductors, Instruments and Photonic, University of Campinas. in Portuguese
dc.descriptionGrey, J.M., (1975) An Exploration of Musical Timbre, , Doctoral dissertation, Stanford Univ
dc.descriptionGrey, J.M., Moorer, J.A., Perceptual evaluations of synthesized musical instrument tones (1977) Journ. Ac. Soc. Am., 62 (2), pp. 454-462
dc.descriptionHorowits, D., Generating rhythms with genetic algorithms (1994) Proceedings of the 1994 International Computer Music Conference (ICMC'94), pp. 142-143
dc.descriptionhttp://aisart.hybridsociety.net/, Accessed in March 2005Jerne, N.K., Towards a network theory of the immune system (1974) Ann. Immunol. (Inst. Pasteur), pp. 373-389
dc.descriptionJohnson, K., (2000) Controlled Chaos and Other Sound Synthesis Techniques, , BSc thesis, University of New Hampshire Durham, New Hampshire
dc.descriptionManzolli, J., Maia Jr., A., Fomari, J.E., Damiani, F., The evolutionary sound synthesis method (2001) Proceedings of the Ninth ACM International Conference on Multimedia, , September 30-October 05, Ottawa, Canada
dc.descriptionManzolli, J., FracWav sound synthesis (1992) Proceedings of the International Workshop on Models and Representations of Musicals Signals, , Capri
dc.descriptionManzolli, J., Maia, A., Interactive composition using Markov chain and boundary functions (1995) Proceedings of the 15th Brazilian Computer Society Conference, , II Brazilian Symposium on Computer Music
dc.descriptionMiranda, E.R., (2003) On the Music of Emergent Behavior: What Can Evolutionary Computation Bring to the Musician?, 36 (1), pp. 55-58. , Leonardo
dc.descriptionMoroni, A., Manzolli, J., Von Zuben, F., Gudwin, R., Vox populi: An interactive evolutionary system for algorithmic music composition (2000) Leonardo Music Journal, 10. , San Fracisco, USA: -MIT Press
dc.descriptionNossal, G.J.V., The molecular and cellular basis of affinity maturation in the antibody response (1993) Cell, 68, pp. 1-2
dc.descriptionPerelson, A.S., Oster, G.F., Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-nonself discrimination (1979) J. Theoret. Biol, 81, pp. 645-670
dc.descriptionRisset, J.C., (1966) Computer Study of Trumpet Tones, , Murray Hill, N.J.: Bell Telephone Laboratories
dc.descriptionRisset, J.C., Wessel, D.L., Exploration of timbre by analysis and synthesis (1982) The Psychology of Music, pp. 26-58. , D. Deutsch (ed.). New York: Academic
dc.descriptionSantos, A., Arcay, B., Dorado, J., Romero, J., Rodríguez, J., Evolutionary computation systems for musical composition (2000) International Conference Acoustic and Music: Theory and Applications (AMTA 2000), 1, pp. 97-102. , ISBN:960-8052-23-8
dc.descriptionSegel, L., Perelson, A.S., Computations in shape space: A new approach to immune network theory (1988) Theoretical Immunology, 2, pp. 321-343. , ed. A.S. Perelson
dc.descriptionSmalley, D., Spectra-morphology and structuring processes (1990) The Language of Electroacoustic Music, pp. 61-93. , ed. Emmerson
dc.descriptionThywissen, K., (1993) GeNotator: An Environment for Investigating the Application of Genetic Algorithms in Computer Assisted Composition, , Univ. of York M. Se. Thesis
dc.descriptionVon Helmholtz, H., (1885) On the Sensations of Tone, , London, Longman
dc.descriptionXenakis, I., (1971) Formalized Music, , Bloomington: Indiana University Press
dc.languageen
dc.publisher
dc.relationLecture Notes in Computer Science
dc.rightsfechado
dc.sourceScopus
dc.titleApplication Of An Artificial Immune System In A Compositional Timbre Design Technique
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución